Two years of GRB localizations with IBAS

Sandro Mereghetti IASF - Milano

http://ibas.mi.iasf.cnr.it

21 GRBs localized by IBAS in the INTEGRAL instruments FOV

GRB 021125		0.9 days	Malaguti et al. 2003, A&A 411, L307
GRB 021219		5 hr	Mereghetti et al. 2003, A&A 411, L311
GRB 030131	0	2 hr	Götz et al. 2003, A&A 409, 831
GRB 030227	х	48 min	Mereghetti et al. 2003, ApJ 590, L73
GRB 030320		6 hr	von Kienlin et al. 2003, A&A 411, L321
GRB 030501		24 s	Beckmann et al. 2003, A&A 411, L 327
GRB 030529	found in	off-line search	
GRB 031203	X, O, R, z= 0.1	18 s	Sazonov et al. 2004, Nature 430, 646
GRB 040106	X, 0?	19 s	Moran et al. 2004, A&A in press
GRB 040223	Х	210 s	GCN
GRB 040323	0?	30 s	GCN
GRB 040403		21 s	Mereghetti et al. 2004, A&A in press
GRB 040422		17 s	GCN
GRB 040624		6 hr	GCN
GRB 040730		35 s	GCN
GRB 040812	x	30 s	GCN
GRB 040827	х,о	1.5 hr	GCN
XRF 040903		32 s	GCN
GRB 041015		2 hr	GCN
GRB 041218		~20 s	GCN
GRB 041219	IR, O	~20 s	GCN

Some statistics

- 21 GRBs / 25 months = (0.8 ± 0.2) GRB/month
- Time distribution:

2 in Nov-Dec 20026 in 200313 in 2004

• Observ. type distribution:

3
5
2
11

some more statistics

• Speed of alerts:

Rapid12(~ seconds)Slow9(~ hours)

• Counterparts:

6 X-ray afterglows (100% of follow-ups)
~5-6 Optical/IR transients

plus a few interesting upp. Limits

1 redshift (z=0.1)
1 simultaneous IR flash

The INTEGRAL bursts are among the faintest with good localizations

S. Mereghetti -

Some highlights:

- GRB 030227 Mereghetti et al. 2003
 - X-ray afterglow with high intrinsic absorption
 - X-ray lines from light elements

ESTEC - Jan 21, 2005

X-ray afterglow with XMM-Newton

Evidence for intrinsic absorption from EPIC spectrum

X-ray afterglow with XMM-Newton

Evidence for lines in last 10 ks of observation

Mg, Si, Ar, Ca,

at z=1.4

but no Fe, Co, Ni

JRUS

S. Mereghetti - ESTEC - Jan 21, 2005

Some highlights

• GRB 030227

Mereghetti et al. 2003

- X-ray afterglow with high intrinsic absorption
- X-ray lines from light elements
- GRB 031203 Sazonov et al. 2004, Malesani et al. 2004, Vaughan et al. 2004
 - closest GRB z=0.1
 - spectroscopic SN identification
 - expanding dust scattering X-ray halo (X-ray flash?)

\rightarrow It does not fit the Amati relation !

- ESTEC - Jan 21, 2005

Expandig dust scattering halo seen in X-rays

(Vaughan et al 2004)

S. Mereghetti – ESTEC – Jan 21, 2005

 \rightarrow D_{Earth-dust} = 882 and 1388 pc

From the dust halo Vaughan et al. (2004) derive $Fx \sim (1.5+/-0.8) \times 10^{-7} \text{ erg cm}^{-2} \text{ s}^{-1}$ (0.2-10 keV) for the prompt X-ray emission

Some highlights

• GRB 030227

Mereghetti et al. 2003

- X-ray afterglow with high intrinsic absorption
- X-ray lines from light elements
- GRB 031203 Sazonov et al. 2004, Malesani et al. 2004, Vaughan et al. 2004
 - closest GRB z=0.1
 - spectroscopic SN identification

S. Mereghetti

- expanding dust scattering X-ray halo (X-ray flash ?)
- GRB 040403 Mereghetti et al. 2004
 - Faint, X-ray rich, OT>24.2 mag @ 16 hr

S. Mereghetti

-

R

NOT

N

E

Some highlights

- GRB 030227 Mereghetti et al. 2003
 - X-ray afterglow with high intrinsic absorption
 - X-ray lines from light elements
- GRB 031203 Sazonov et al. 2004, Malesani et al. 2004, Vaughan et al. 2004
 - closest GRB z=0.1
 - spectroscopic SN identification
 - expanding dust scattering X-ray halo (X-ray flash?)
- GRB 040403 Mereghetti et al. 2004
 - Faint, X-ray rich, OT>24.2 mag @ 16 hr
- GRB 041219
 - Very high fluence, long duration
 - simultaneous IR flash

- Thanks to the rapid IBAS localization (2.5 arcmin) robot telescopes could observe during the GRB emission
- An IR "flash" K~15.5 simultaneous with the GRB was discovered by Bloom, Blake et al.

INTEGRAL/ISGRI vs. SWIFT/BAT ON-AXIS SENSITIVITY

 $S_{min} \propto (BKG / A_{eff})^{\frac{1}{2}}$

 $A_{ISGRI} / A_{BAT} = 1/2$

BKG_{ISGRI} ~ 0.6 kHz BKG_{BAT} ~ 12 kHz

 \rightarrow ISGRI is more sensitive by a factor ~ 3

A proper computation taking detector area and mask transparency (both energy dependent) into account:

IBIS on axis sensitivity is 20-40% better than the Swift one

What have we learned ?

Most IBAS GRBs are rather faint → not much can be extracted from the INTEGRAL data alone

Exciting results have been obtained whenever the rapid localizations provided by IBAS could be exploited for multi-wavelength observations

INTEGRAL has excellent capabilities for "real-time" science - Not only GRBs

... until the launch of Swift this was unique...

IBAS has evolved...

- Better localizations, increased sensitivity, less false alerts, etc....
- Extended to include Soft Gamma-ray Repeater Alerts and, more recently, type I bursts from known LMXRB

•... and it must continue to evolve:

- add JEM-X very useful for X-ray bursts
- add Compton mode see next talk
- provide more real-time information/data on GRBS

more on IBAS and INTEGRAL GRBs at

http://ibas.mi.iasf.cnr.it

IBAS is successful thanks to the excellent work and continuous support of many people, in particular:

D.Götz, J.Borkowski, M.Beck, N.Mowlavi, S.Shaw, A. von Kienlin, A.Rau, N.Lund, R.Walter, and many other at the ISDC, ESTEC/ESOC, and in the Instrument Teams...

