High-mass X-ray binaries in the inner part of the Galaxy

A.Lutovinov,

M.Revnivtsev, M.Gilfanov, S.Molkov, P.Shtykovskiy, R.Sunyaev (IKI, Moscow/MPA, Garching)

A&A, in press

			Oph clus	er		
10.0	Ser X-1		GX9+9 GX1+4			
4U1907+097	GS1843+009 IGRJ18325-0756	M1812-12 GX17+2	SLX1735-269 GX9+1 IGRJ17597-2201 GX3+1	4U1724-307 • GRS1734-292	GX349+2 4U1700-377 OAO1657-415	4U1630-47
GRS1915+105	X1901+03 IGRJ18483-031 SS433 XTEJ1855-026	AX1820.5-1434	GX5-1 GRS1758-258	1E1740.7-294 IGRJ17464-321	EX01722-363 3 4U1705-44	IGRJ16318-4848
-10.0	Aql X-1 4U1916-053		GS1826-238 4U1820-303		4U1735-444	
	40.0 20	0.0	0. v1223Sgr	0 401822-37	340	0

The inner part of the Galaxy : from the Norma arm to the Sagittarius arm 325<|<50, |b|<5 **Previous results**

Grimm, Gilfanov, Sunyaev (2002)

1-12 keV ASM/RXTE data

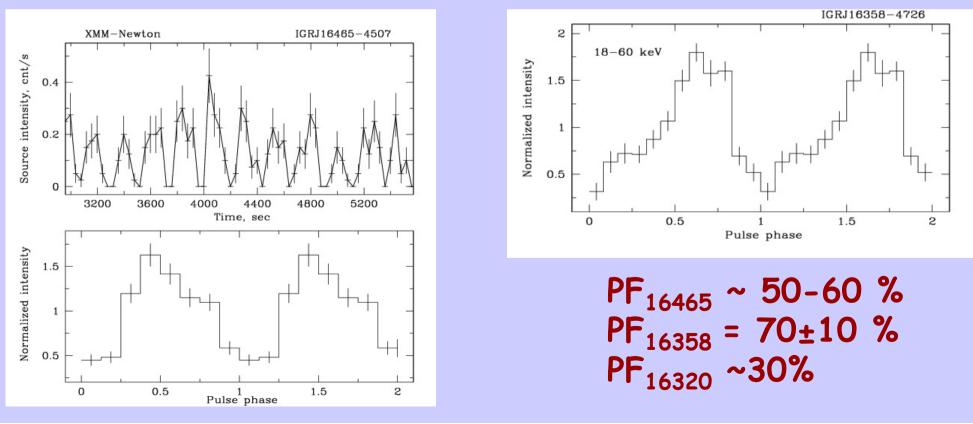
Total sample of HMXB in the Galaxy with the limiting sensitivity of $\sim 6 \times 10^{-11}$ erg/s/cm² is about 50, in the inner part of the Galaxy < 10

LMXB concentrated towards the Galactic Center (old population) HMXB concentrated towards the spiral arms (young population) Current study (INTEGRAL) Energy band: 20-60 keV

Inner part of the Galaxy ~>5 Msec (public data + RAS part of General Program)

We choose a limiting uniform sensitivity ~1.5 mCrab (~1.8×10⁻¹¹ ergs/s/cm²) -> maximal area with the best possible sensitivity

Totally detected 89 sources of the different nature (flux ~> 1.5 mCrab): 49 LMXB, 22 HMXB, 2 AGN, several SNR and single pulsars, 10 unidentified + IGRJ16465-4507


List of detected HMXB

Source	$\alpha(2000)$	$\delta(2000)$	$N_{\rm H}, 10^{22} \ {\rm cm}^{-2}$	$N_{\rm H}, 10^{22} \ {\rm cm}^{-2}$	Flux, mCrab ^a	Comments ^b
			Observed	Galactic		
4U 1538-522	235.584	-52.376	1.6[1]	0.96	16.5 ± 0.2	Р
AXJ161929-4945	244.871	-49.758	14,	2.19	$2.0{\pm}0.2$	
IGR J16318-4848	247.953	-48.801	310,	2.07	21.8 ± 0.2	
AX J163159-4752 ^d	248.009	-47.859	18,	2.13	13.0 ± 0.2	Р
IGR J16358-4726	248.990	-47.407	40,	2.20	3.11 ± 0.21	Р
AX J163904-4642	249.757	-46.676	58,	2.18	4.63 ± 0.21	Р
IGR J16465-4507	251.648	-45.118	72,	2.12	8.8 ± 0.9	Р
IGR J16479-4514 ^e	252.032	-45.206	12,	2.14	3.22 ± 0.20	
OAO 1657-415	255.199	-41.653	40[2]	1.76	68.2 ± 0.2	Р
4U 1700-377	255.982	-37.841	2-100[3]	0.74	185.0 ± 0.2	
EXO 1722-363	261.286	-36.280	50[4]	1.50	$7.18 {\pm} 0.13$	Р
IGR/XTE J17391-3021	264.802	-30.329	1 - 1.5[5]	1.37	1.50 ± 0.11	
AX J1749.2-2725	267.335	-27.511	10[6]	1.62	1.51 ± 0.11	Р
IGR/SAX J18027-2016	270.677	-20.278	1 - 1.5[7]	1.04	4.06 ± 0.14	Р
AX J1820.5-1434	275.131	-14.553	13[8]	1.65	$2.94{\pm}0.20$	Р
AX J1838.0-0655	279.523	-6.921	9,	1.86	2.36 ± 0.24	
GS 1843+00	281.412	0.891	2.3[9]	1.01	4.49 ± 0.20	Р
XTE J1855-026	283.873	-2.597	15[10]	0.73	11.4 ± 0.2	Р
4U 1901+03	285.914	3.215	7^{f}	1.03	75.5 ± 0.2	Р
4U 1907+097	287.401	9.843	3-8 [11]	1.75	13.2 ± 0.2	Р
X1908+075	287.699	7.598	10-50[12]	1.48	13.4 ± 0.2	Р
SS 433	287.950	4.990	_g	0.76	14.2 ± 0.2	BH
XTE J1858+034	284.693	3.429	6 [13]	1.89	15 ± 1	Р

Criteria of HMXB: 1) optical identification 2) pulsations 3) strong intrinsic absorption

Pulsations

16 of 23 - are X-pulsars, 4 of them - new IGRJ16358-4726 P=5980±22 sec (INTEGRAL, Chandra) (Lutovinov, Revnivtsev, Glifanov et al. 2004, Patel et al. 2004) IGRJ16320-4751 P~1300 sec (XMM, ASCA) (Lutovinov, Rodriguez, Revnivtsev, Shtykovskiy 2004) IGRJ16465-4507 P=228±6 sec (XMM) (Lutovinov et al. 2004) AXJ163904-4642 P~900 sec (XMM) (Walter et al. 2004)

Intrinsic absorption

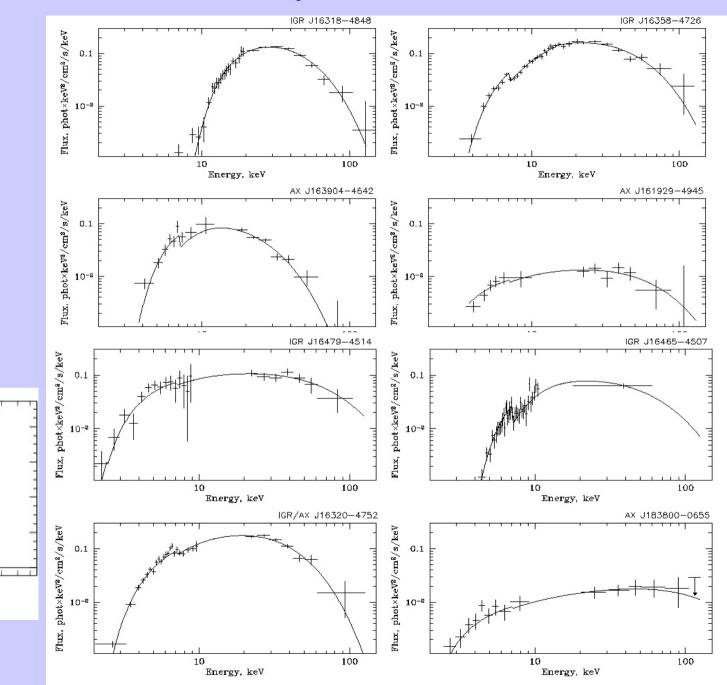
19 of 23 sources have a significant (>5×10²² cm⁻²) intrinsic absorption

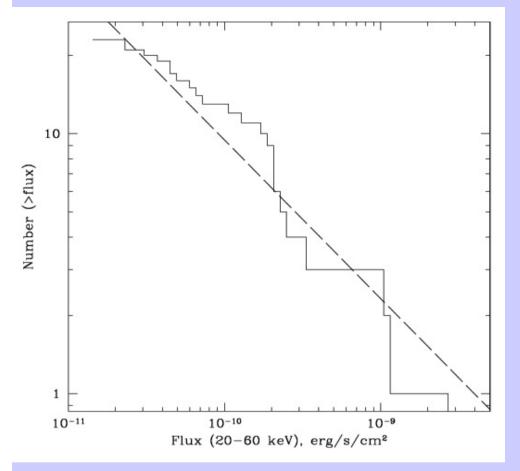
10

NH, 1022 cm-2

100

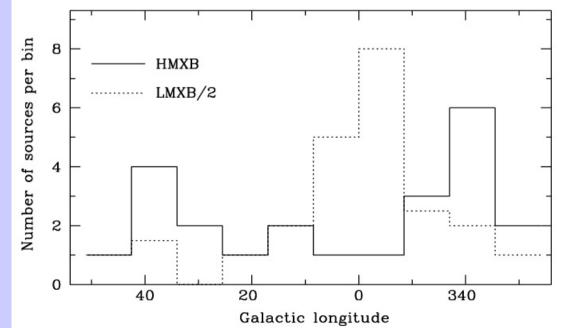
din 8

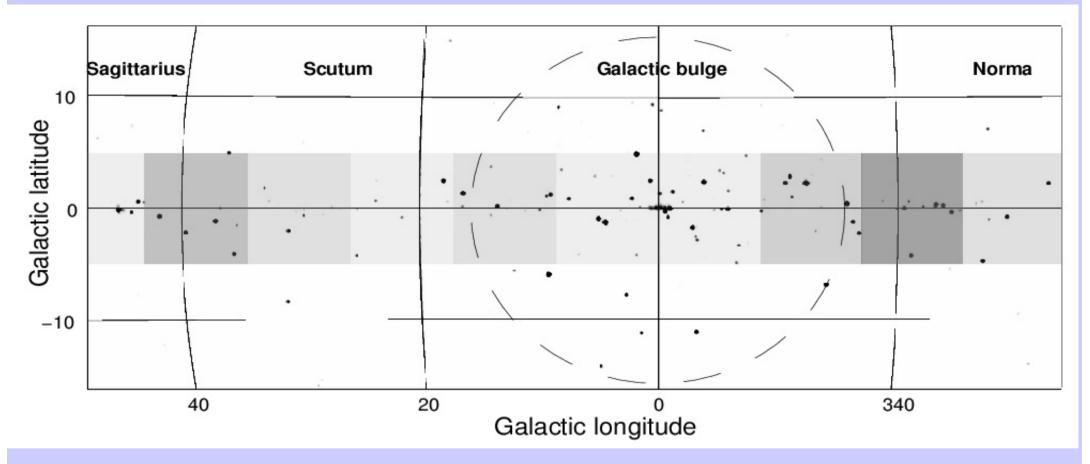

4


2

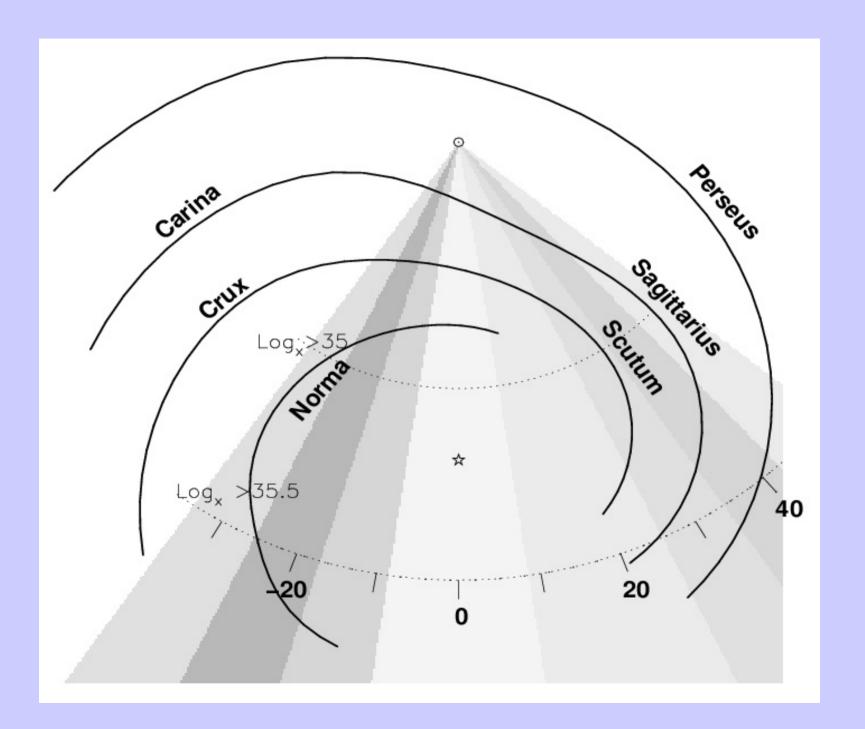
0

per 9


Number



Angular distribution of HMXB and LMXB in the inner part of Galaxy

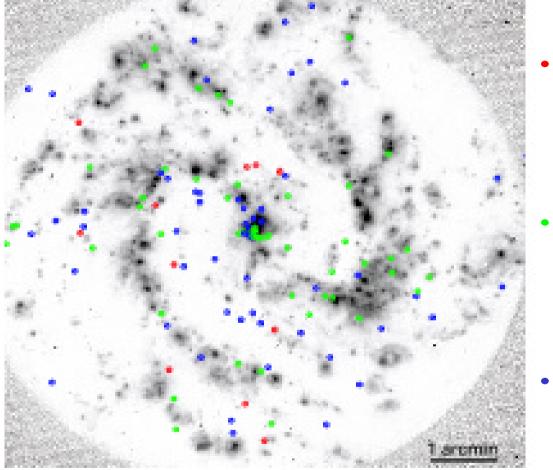

Number-flux function of HMXB Dashed line represents a shape of this function obtained by Grimm et al. (2002) with ?=0.64

HMXB distribution

Spatial bin is 8.5×10 deg, The gray scale -> change of the HMXB density (1-7) HMXB peaked away of the Galactic Center and concentrated to the spiral arms, but not one-to one. Why?

Active HMXB - few Myr to 20-30 Myr from the beginning of the star formation (SF).

Current SF regions ~ do not have HMXBs.


Examples:

molecular clouds (Feigelson et al. 2003, Nakajima et al. 2003);

2) LMC, there is a time delay about (1-2)×10⁷ yr between epoch of the initial SF and epoch of HMXB (Shtykovskiy & Gilfanov 2004);

3) M83.

M83 (H_a image, CHANDRA)

supersoft sources
(no correlation with
HII regions)

 soft sources, probably SNRs (mostly found in regions with high H_a)

- XRB

(Soria & Wu, 2003)

Spiral arms = spiral density waves = enhanced SF

Spiral arm pattern moves : ~20 Gyr⁻¹ to ~60 Gyr⁻¹ (Bissantz et al. 2003) Innermost part of arms (~3.4 kpc) and the bar corotates with stars (Bissantz et al. 2003)

Current positions of arms are displaced with the respect to the density maxima in the HMXB distribution. We need ~40° rotation of the spiral arms pattern.

Time delay ~10-12 Myr

Conclusions

New sample of HMXB in the inner part of the Galaxy is much larger than previous, reasons - we revealed a considerable part of the absorbed sources;

Majority of HMXB are significantly photoabsorbed;

```
Most of HMXBs - X-ray pulsars;
```

HMXB are concentrated towards spiral arms, but not one-toone; reason – the dependence of number of HMXB on the age of the stellar population; the current maxima are observed where the SF was taking place ~10-12 Myr ago;

Continuation of observations is needed to increase the statistical significance of the observed displacement of HMXB