First results on V 0332--53 in outburst

Ingo Kreykenbohm (IAAT/ISDC)

N. Mowlavi, N. Produit, S. Soldi, R. Walter, P. Dubath, M. Türler (ISDC) P. Lubinski (NCAC/ISDC) R. Staubert, A. Santangelo (IAAT) W. Coburn (SSL/UCB) R. E. Rothschild (CASS/UCSD)

Neutron star + BQ Cam

- transient, discovered 1973 by Vela 5B
- super giant: O8–9Ve
- distance: 7 kpc
- eccentric (e = 0.31) Orbit: 34.25

Neutron star + BQ Cam

- transient, discovered 1973 by Vela 5B
- super giant: O8–9Ve
- distance: 7 kpc
- eccentric (*e* = 0.31) Orbit: 34.25

- 3 outbursts: 1973, 1983, 1989
- typical duration: 3 months
- 1973 outburst: \sim 1.4 Crab \Longrightarrow \sim 10³⁸ erg/s!!!
- since January 2002: brightening of optical companion!
- new outburst began November 2004
- 3 CRSF reported by Coburn et al. (2005) in RXTE data

Observations, I

- TOO observation scheduled for January 7–10
- 30 ksec in staring
- 70 ksec in hexagonal

Observations, II

- TOO observation scheduled for January 7–10
- 30 ksec in staring
- 70 ksec in hexagonal

- analysis with OSA 4.2
- only V 0332+53 in FOV
- flux 20–60 keV: 550 mCrab \implies consistent with *RXTE-ASM*
- PICsIT: —
- OMC: 15.4 ± 0.2

 \implies consistent with simultaneous Earth-bound observation (ATEL #388)

Spectrum, I

Joint spectrum of JEM-X, ISGRI, and SPI

2 Lines clearly detected by eye

Spectrum, II

- $\bullet \ {\rm no} \ N_{\rm H}$
- $\chi^2 = 9246$ (164)

Spectrum, III

1 CRSF

Model:

- cutoffpl + 1 Gaussian
 - *E*_C = 26.5 keV
 - σ_{Cyc} = 3.1 keV
 - $\tau_{Cyc} = 1.4$
 - χ^2 = 1336 (161)

ISD

V 0332+53

Spectrum, IV

V0332+53 10¹ a) normalized counts/sec/keV 10⁰ 10⁻¹ 10⁻² 10⁻³ 10⁻⁴ 10⁻⁵ 20 b) 10 0 × -10 -20 d) 5 +++++++++ × 10 Channel Energy [keV]

2 CRSFs

Model:

- cutoffpl + 2 Gaussians
 - *E*_C = 48.1 keV
 - σ_{Cyc} = 2.1 keV

ISD

V 0332+53

- $\tau_{\rm Cyc}$ = 1.4
- $\chi^2 = 617.7$ (158)

8

Spectrum, V

2 CRSFs

Model:

- cutoffpl + 3 Gaussians
 - *E*_C = 29.6 keV
 - σ_{Cyc} = 4.1 keV
 - $\tau_{\rm Cyc}$ = 1.0
 - $\chi^2 = 249.4$ (155)

ISD

V 0332+53

Spectrum, VI

V0332+53 10¹ a) normalized counts/sec/keV 10⁰ 10⁻¹ 10⁻² 10⁻³ 10⁻⁴ 10⁻⁵ 6 4 $\boldsymbol{\varkappa}$ 664 Ē C) ╷_{₩╢╔╃}┼╅┽┎╛┶┽_┥╪╕_┲┽[┿]╛┶_┲┶_{┱┪}┶_┱┿_┲┿_┲┿_╋┿╝╧ × 10 Channel Energy [keV]

3 CRSFs

Model: cutoffpl + 4 Gaussians

- *E*_C = 71.4 keV
- $\sigma_{\rm Cyc}$ = 5.5 keV
- $\tau_{\rm Cyc}$ = 1.7
- χ^2 = 194.5 (152)

ISD

V 0332+53

Spectrum, VII

- *E*_C = 71.4 keV
- $\sigma_{\rm Cyc}$ = 5.5 keV
- $\tau_{\rm Cyc}$ = 1.7
- χ^2 = 194.5 (152)
- E_C = 24.9 keV, (29.0 keV), 50.5 keV, 71.7 keV

Pulse Period

Determination of the pulse period: \implies binary orbit correction required!

But: ephemeris too old, uncertainties too large!

Determination of new ephemeris not trivial \implies new orbital period: 34.297 d, but solution not unique.

- \implies more observations required.
- \implies second *INTEGRAL* TOO and RXTE data!

Period without binary correction:

P_{Pulse}=4.375 s, unchanged from 1983!

V0332+53

Energy resolved Pulse Profiles, I

• no binary orbit correction possible

 \implies create pulse profiles only over short time period

- use data from Rev. 274 (20ksec)
- Period: $P_{Pulse} = 4.3749 s$

ISGRI

Energy resolved Pulse Profiles, II

• no binary orbit correction possible

 \implies create pulse profiles only over short time period

- use data from Rev. 274 (20ksec)
- Period: P_{Pulse} = 4.3749 s

JEM-X

Conclusions, I

- 3 CRSFs detected line energies very similar to RXTE
- fundamental energy: \sim 25 keV \Longrightarrow $B = 2.7 \times 10^{12}$ G
- fundamental line has non-Gaussian shape
- pulse profile is energy dependent
- ⇒submitted to A&A Letters

Conclusions, II

- 3 CRSFs detected line energies very similar to RXTE
- fundamental energy: \sim 25 keV \Longrightarrow $B = 2.7 \times 10^{12}$ G
- fundamental line has non-Gaussian shape
- pulse profile is energy dependent
- ⇒submitted to A&A Letters

next steps:

- new determination of the orbit
- pulse phase resolved spectroscopy
- comparison with Monte Carlo simulations of Araya & Harding (1999)

Conclusions, III

- 3 CRSFs detected line energies very similar to RXTE
- fundamental energy: \sim 25 keV \Longrightarrow $B = 2.7 \times 10^{12}$ G
- fundamental line has non-Gaussian shape
- pulse profile is energy dependent
- ⇒submitted to A&A Letters

next steps:

- new determination of the orbit
- pulse phase resolved spectroscopy
- comparison with Monte Carlo simulations of Araya & Harding (1999)

Thank you for your attention!

