Spectral evolution and flaring activity during the transition hard to soft state of H1743-322

A.Joinet, E.Jourdain, J Malzac, J.P.Roques, CESR, Toulouse P.Ubertini, F.Capitanio, IASF,CNR,Roma submitted to ApJ

for the Lore Law

3-200 keV spectral states and variability of the INTEGRAL black hole binary IGR J17464-3213, Capitanio et al., ApJ, in press, astro-ph/0411790

 $CDI/IDIC = 11 \cdot 1 \cdot \dots \cdot 1$

History of IGR J17464-3213/H 1743-322/XTE J1746-319

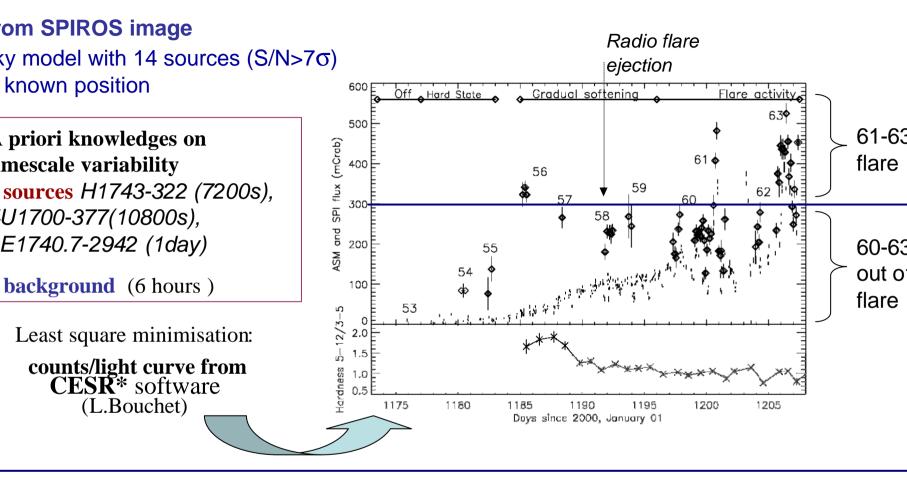
1977/78 outburst

Discovered in August 1977 with HEAO1 observations as a new transient "with a spectrum somewhat harder than the Crab" (Kaluzienski & Holt 1977). Spectrum characterized by a soft component (1-10 keV) and a high energy tail (10-100 keV)

2003/2004 outburst

Rediscovered by INTEGRAL (Revnitsev et al. 03) and then by RXTE (Markwardt & Swank 2003)

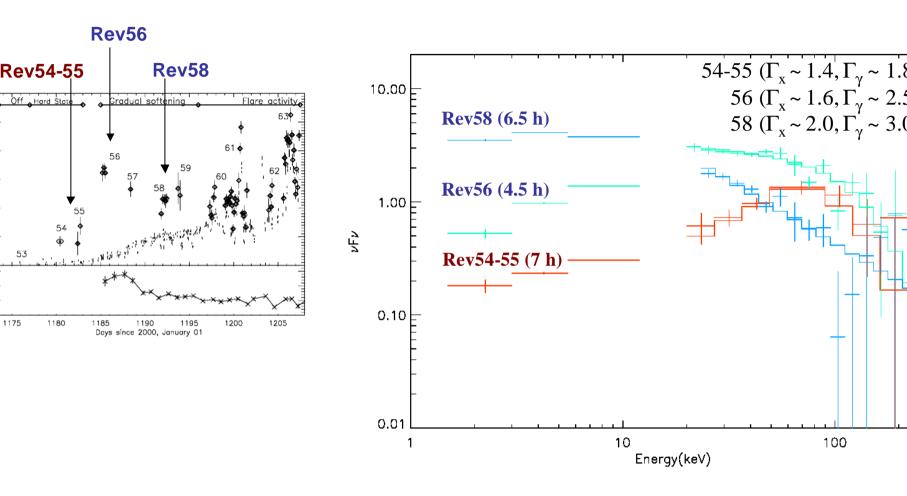
Monitored by ASM/RXTE (Homan et al.04; Remillard et al. 04) and in IR (Baba et al. 04) and Radio (paper in preparation)


> Atel 142 (Rupen et al. 03) : Strong radio flare (increase by a factor 5) between April 6 and 8 2003

• A complex profile with several dominant peaks (similar to Cygnus X-1, GRS 1915+105, other transient blackhole X-ray transient) \Leftrightarrow disc instabilities (Tanaka et al. 96)

◆ PCA/RXTE observations (Miller et al. 04, Homan et al. 04) : behavior similarities with a BH (QPOs observations and power density spectrum), flaring period before the source settle into a relatively steady and soft X ray state.

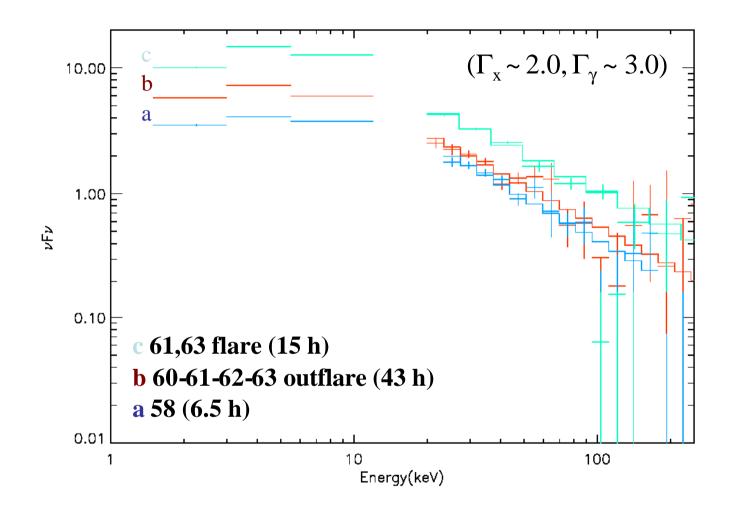
SPI (20-36 KeV) and ASIVI (1.5-12KeV) light-curve

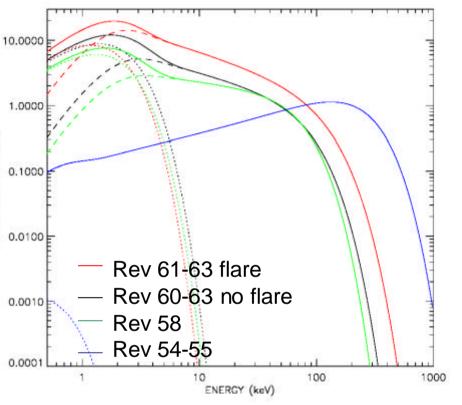


High temporal variability in both X and gray energy band

ASM and SPI lightcurves correlated during flare events of rev61 & rev63
The initially hard spectrum rapidly evolves to a softer one
-L[2-200]/Ledd increases from 0.03 (rev54-55) up to 0. 3(61-63 flare)

A spectro-temporal study on the timescale of about 1 day needed

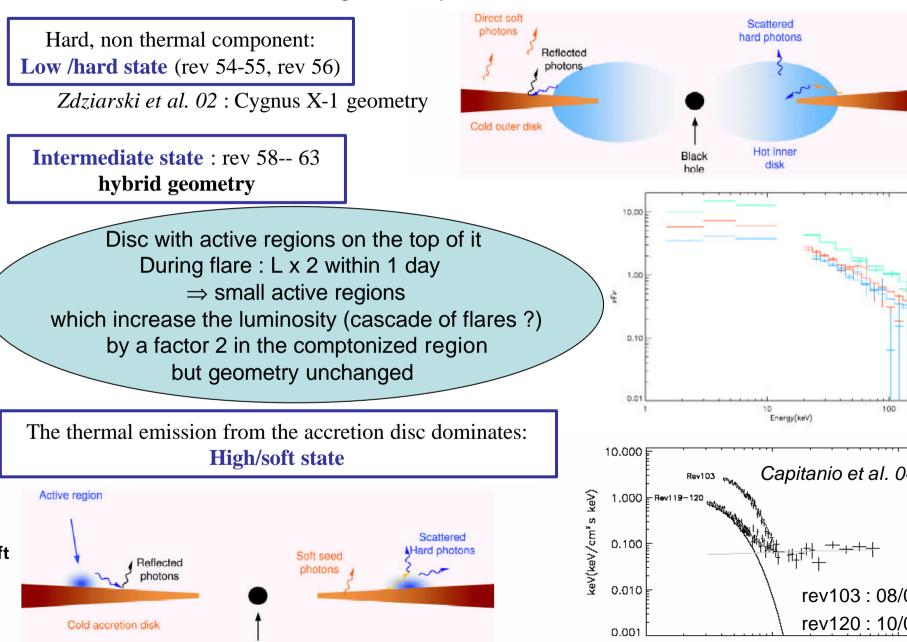

Specifial behavior. Hard to soll state transition


♦ rev54-55 → rev58: maximum of the luminosity decreases towards low energy (from 80 keV down to few keV)

♦ increases of the soft component

Spectral behavior during flaring activity

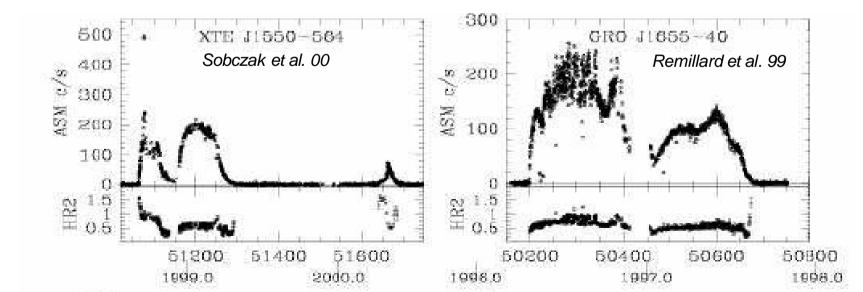
 $58 \rightarrow 60-63$ out of flare : the soft X-ray component increases 60-63 out of flare $\rightarrow 61,63$ flare : same spectral shape during flare events Spectral modelling : evolution of the macroscopic parameters


Xspec model: N_H*const*(*diskbb*+*compps*)

Comptonisation component : compose (Poutanen & Svensson 96), kTe,τ Blackbody emission from the accretio disk : diskbb (Mitsuda et al.1984), Tin

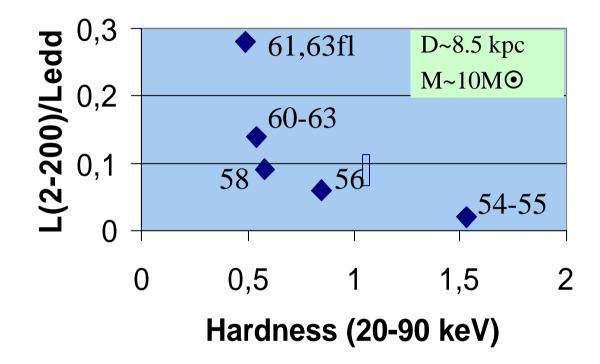
const = 1.04 (normalisation facteur ASM/SPI) $N_{H} = 2.4 * 10^{22} \text{ cm}^{-2}$ (PCA, Markwardt 8 Swank 2003) except for rev 56


		rev	$T_{in}(keV)$	Φ_{bb}	kТе	τ	$\Phi_{[2-10]}$	$\Phi_{[20-100]}$	χ^2	
			keV	$\times 10^{-8}$	$\rm keV$		$\times 10^{-8}$	$\times 10^{-8}$		
(1-2		54 - 55	0.37 ± 0.77	0.05	60 ± 30	3.5 ± 1.9	0.1	2.3	1.1(10)	{ N_H= 114 *
		$56^{(a)}$	0.51 ± 0.31	1372	32 ± 6	2.9 ± 0.6	0.4	5.5	1.6(16)	
		58	0.48 ± 0.12	1.9	22 ± 4	3.0 ± 0.2	0.9	3.1	1.5(17)	
		6063	0.64 ± 0.06	24.8	38 ± 8	2.2 ± 0.9	1.6	3.1	2.3(10)	
		6163	0.53 ± 0.11	26.8	30 ± 1	1.9 ± 0.3	3.1	6.3	1.1 (9)	
		E Expressed in and $cm^{-2}c^{-1}$						ΛΙα	n in $at at al 0$	1


geometry evolution

Conclusion

- The unique opportunity to observe a X-ray transient from the onset of its outburst
- Study of the spectral variability on the timescale of ~ 1 day for a source of 270 mCrab
 - The interest : characterization of the state of a X-ray binary on short timescale
 - Do the same study with other sources
- Radio ejection precedes the X-ray maximum flux \rightarrow More investigation with radio observers to be done



Hardness-flux evolution in 20-90 keV energy range

" Negative hardness-flux correlation related to the Hard State to the Soft/Intermediate state (timescale of ten days)

" Constant hardness during flare events

