The Broad-Band X-ray Spectrum of Cygnus X-1 Measured by INTEGRAL

Marion Cadolle Bel Service d'Astrophysique, CEA-Saclay, France Internal INTEGRAL Workshop, Noordwijk, 18 - 21 January 2005

P. Sizun, A. Goldwurm, P. Laurent, A. Zdziarski, J. Malzac, E. Jourdain, J-P. Roques, P. Goldoni, J. Rodriguez, C. Gouiffès & L. Foschini

Cygnus X-1

Bright X-ray emission (1964)

High mass X-ray binary

- 2 kpc

- orbital period: 5.6 days

- wind accretion 10 M_{\odot} black hole 18 M_{\odot} giant (09.7 I) companion

Complex spectral-timing behaviour

- incoherent fast X-ray variability
- hard spectrum above 100 keV
- persistent X-ray emission

First black hole prototype

Two Main Spectral States

High/Soft

Dominant soft X-ray thermal component; photon spectral index = 2.2

- Low/Hard (90% time)
- Low flux for soft X-rays, strong flux for hard photons (keV) Photon spectral index 1.5-2, cut-off at E = 100 keV: comptonization

Observation Log

PV-Phase (27th November - 15th December, 2002)

GPS (between 2003, March and 2004, September)

Open Time (7 - 11th June, 2003)

Calibration in 2004, November 22nd

ASM Light Curve

Spectral transitions probably occurring

Zioomisaone du Bal SANS GRal Lighst/CGAGes and Light differs relatio

Changes in IBIS/ISGRI - Corresponding hardness ratio?

Corresponding Hardness Ratio

December 02 Spectra

 $kT = 93^{+18}_{-12} keV$ weak disc component ~ 0.2 L_{tot} $t = 1.5 \pm 0.2$ Model = absorbed black body disc $\frac{1}{3}$ comptonization Adding then reflection 5 ± 10 keV is an components Fe line 6.4 \pm 0.4 keV not well constraine Fe line 6.4 \pm 0.4 keV not well constraine

June 03 Spectra

 $kT = 104 \pm 16 \text{ keV}$ t = 0.3 ± 0.1

92 - 188 (dof - 230)

disc: $kT_{in} = 1.22 \text{ keV}$, comp. ~ 0.4 L_{tot} L _{0.5-10 keV}: 6.6 10³⁶ ergs s⁻¹ Fe line 7.1 ± 0.1 keV well defined EW = 190 eV: reflection 0.58 ± 0.05

GPS 03-04 Spectra

Preliminary Spectral Parameters in GPS 03-04

Group	Gr. 1	Gr. 2	Gr. 3	Gr. 4	Gr. 5
Parameters					
kT (keV)	59 ± 20	106±49	61 ± 20	57±10	113 ± 72
t	2.5 ± 0.5	0.3±0.2	0.6±0.3	2.5 ± 0.1	0.2±0.1
Disc (kT _{in})	weak	1.5 keV	1.1 keV	weak	1.4 keV
L _{0.5-10 keV}	0.2 L _{tot}	0.4 L _{tot}	0.4 L _{tot}	0.4 L _{tot}	0.5 L _{tot}
Fe line	6.3 ± 0.3	6.7±0.8	7.1±0.1	6.0±0.5	7 ± 2
(keV)	(bad)	(bad)	(good)	(bad)	(bad)
EW (eV)	557	297	89	721	469
Reflection	0.4 ± 0.1	0.8±0.2	0.3±0.1	0.3 ± 0.1	0.4 ± 0.2
angle					
? ² réd	1.02	1.08	1.02	0.78	1.45
(dof=185)					
	ΗΔΡΟ	SOFT	SOFT	HARD	SOFT

November 04 Spectra

 $kT = 94 \pm 44 \text{ keV}$ t = 0,4 ± 0.2

 $?_{ród}^2 = 1,05 \text{ (dof } = 209)$

disc: $kT_{in} = 1.27 \text{ keV}$, comp. ~ 0.4 L_{tot} L _{0.5-10 keV}: 6.8 10³⁶ ergs s⁻¹ Fe line 7.8 ± 0.6 keV well defined reflection 0.35 ± 0.15

December 02 and June 03

Conclusions

- Evolutions from hard (December 02, GPS) to soft states (June 03, GPS) thanks to combined JEMX, IBIS and SPI spectra
- Probably intermediate states instead of real soft states (conclusion also supported by radio observations, see Malzac et al. 04
- Comptonization models work well (typical for such a black hole)
- Fe lines and reflection values consistent with precedent studies
- Future work:
- Other models (eqpair, compps, ...) to be tested on all available data
- SPI high-energy data significance requires investigation
- Study of fast variability (QPOs)

Thanks for your attention !

Spectra comparisons in E² f(E) December 02 and June 03

The INTEGRAL Satellite

INTERnational Gamma Ray Astrophysical Laboratory (ESA) I mager I BIS (2 detectors I SGRI, PICsIT): 13 keV to 10 MeV Spectrometer (SPI): 20 keV to 8 MeV

Large energy coverage

Spectral Parameters

Gr. 1 ?²_{réd} = 1.02 (dof = 185) HARD $kT = 59 \pm 20 \text{ keV}$, $t = 2.5 \pm 0.5$, weak disc component ~ 0.3 L_{tot} Fe line 6.3 \pm 0.3 keV not well defined, reflection ~ 0.35 \pm 0.07 Gr. 2 ?²_{réd} = 1.08 (dof = 185) SOFT $kT = 106 \pm 49 \text{ keV}, t = 0.3 \pm 0.2, kT_{in} = 1.46 \text{ keV}, \text{ comp.} \sim 0.5 L_{tot}$ Fe line 6 \pm 2 keV not well defined, reflection ~ 0.8 \pm 0.2 Gr. 3 ?²_{réd} = 1.02 (dof = 185) SOFT $kT = 61 \pm 20 \text{ keV}$, $t = 0.6 \pm 0.3$, $kT_{in} = 1.11 \text{ keV}$, comp. ~ 0.5 L_{tot} Fe line 7.1 ± 0.1 keV well constrained, reflection ~ 0.3 ± 0.1 Gr. 4 ?²_{réd} = 0.78 (dof = 185) HARD kT = 57 \pm 10 keV, t = 2.5 \pm 0.05, weak disc component ~ 0.3 L_{tot} Fe line 6.0 \pm 0.5 keV not well defined, reflection ~ 0.28 \pm 0.04 **Gr**. 5 $?_{réd}^2 = 1.45 \text{ (dof} = 185)$ **SOFT** $kT = 113 \pm 72 \text{ keV}, t = 0.2 \pm 0.1, kT_{in} = 1.41 \text{ keV}, \text{ comp.} \sim 0.6 L_{tot}$ Fe line 6 \pm 2 keV not well defined, reflection ~ 0.36 \pm 0.21