INTEGRAL/SPI and ²⁶Al in the Galaxy

Roland Diehl

MPE Garching, Germany

with H. Halloin, A.W. Strong, J. Knödlseder, K. Kretschmer, W. Wang, et al...

☆ ²⁶Al Astrophysics Issues Reminder
 ☆ INTEGRAL/SPI ²⁶Al Data & Analysis Aspects
 ☆ SPI ²⁶Al Line Spectroscopy (Large-Scale)

Measurements of the Sky at 1809 keV: ²⁶Al

Maps Recent Nucleosynthesis in the Galaxy $(\tau_{26AI} \sim 1My)$

9 Years of Data (CGRO Mission) (Plüschke et al. 2001)

Line Shape Reflects Kinematics (T26AI~1My)

INTEGRAL Internal Science Workshop, Noordwijk (NL), 19 Jan 2005

Roland Diehl

Candidate Sources of ²⁶Al

- p-rich Environment -> H Burning
- 🕙 Seed Nuclei (Ne-Na group or Mg)
- Ejection of Nuclear Ashes (Wind, Explosion)

Core-Collapse Supernovae

- Explosive Burning in O-Ne Shell, Triggered by SN Shock Wave
- Ejection of Pre-SN ²⁶Al and Explosive-Burning ²⁶Al

Massive Stars in their Wolf-Rayet Phase

- Core H-Burning -> ²⁶ Al Production During ~10⁵ MS Phase
- WR Phase Mixing & Stellar Wind -> Ejection into ISM

AGB Stars (M>4M_☉)

- H Shell Burning, Fresh Seed Nuclei from He Pockets
- Ejection Through Thermal Pulses, >> 26 Al Decay Time

Novae

- H Accretion onto White Dwarf
- Explosive H Burning with Seed Nuclei Admixture

NGC 6826

Roland Diehl

²⁶Al Line Shape Astrophysics

in Spiral Arms, Along Line-of-Sight -> ²⁶Al Source Location Along LoS

Gehrels et al. 1996; Kretschmer et al. 2003

Spectroscopy by Imaging Analysis

Adopt Sky Intensity Distribution from a Model

- Use Tracers (e.g. Dust Emission 240 mm), COMPTEL's Map, Exponential-Disks
- Rather Insensitive to Map Detail

Adjust Background and Skymap Intensity per Energy Bin

- Fix Relative Count Ratios of 19 Detectors, Adjust/Fit Bgd Level per Pointing (MPE)
- Model Time History of Line Background from Activation Tracer (adjust per Orbit) (CESR)

Results (GCDE-1 0.8 Ms)

☆ Detection of ²⁶Al (0.8Ms GCDE-1) (~6σ)

 \Rightarrow Consistency:

Flux 4 ±1 10⁻⁴ ph cm⁻² s⁻¹ rad⁻¹

	FWHM [keV]	$I [10^{-4} ph cm^{-2} s^{-1}]$
uncertainty	0.7	1.4
fit value Fig. 6	2.1	3.3
fit value Fig. 7	3.1	3.3
fit value Fig. 8	3.1	4.7

Roland Diehl

Diehl et al., A&A 411 (2003)

²⁶Al Line Width: Velocity of ²⁶Al in ISM

Broad Line was Difficult to Understand

- ²⁶Al on Dust?
- Huge ISM Cavities?
- 🖻 Chen et al. 1997

☆ Issue Dissappeared?

The INTEGRAL ²⁶Al Sky Survey

Core Program, GPS, Specific Targets

☆ "Dither Patterns" Scattered over the Sky

Status late 2004:
Rev 15-225
ISWT Data (CP, PI)
Public Data
Data with PI Permission for ²⁶Al Study
13 Msec total

Ge Detector Spectra from SPI

☆Spectral Background Feature at ~1810 keV:

- Complex of Instrumental Lines
 - 1808.63 keV ²⁶Mg, ^{26/27}Na (²⁷Al (p,α)+ n capture activation)
 - 1810.77 keV ⁵⁶Co, ⁵⁶Mn
 - 1805.5x keV? (degradation / origin tbd)

Variable Activation

- Radioactivity Build-Up
- CR Flux Variations (Belts, Sun)

52.3±0.7% 38.8±0.5% 8.9±1%

Ge Detector Spectra from SPI

Analysis Challenges

Understand Background

- ON/OFF Re-Normalizations
- Complete Activation History
- Line Identifications

Model / Fit Background Properly

Account for Low-Number Statistics

- > 10000 Spectra / Msec

🛠 Analysis Methods

Imaging Spectroscopy with SPI

- ON/OFF Spectra Sanity Checks
- Fitting Model Skymaps per Energy Bin -> First-Order Spectra
- Iterative Deconvolutions -> High-Resolution Spectra

Current Dataset (Largescale ²⁶Al Study)

Rev 15-225 (...19 Aug 2004)

- 🕫 ISWT Data (CP, PI)
- Public Data
- Data with PI Permission for ²⁶Al Study
- 🕫 13 Msec total

☆ All pointings below 30deg

☆ All pointings above 30 deg

Results: Simple/Straightforward ON/OFF

🖈 Separate Database:

© ON= pointing latitudes <30° (11.08 Ms) © OFF= pointing latitudes >30° (2.1 Ms)

Subtract & Inspect

- 13σ Residual Signal
- Width ~ "instrumental" Width < background feature at 1810 keV</p>
- Intensity ~as Expected
 - 21000 counts; expect 25000
 from I~3 10⁻⁴ ph cm⁻² s⁻¹ rad⁻¹
 for this exposure (at GC 3.31 Ms) and A_{eff}~25 cm²

Value	Name	Error
1809.21	Centroid	0.11
1.30	Width	0.00
21024	Counts	1630
12.90	sigma of detection	

Imaging Attempts: SPI vs. COMPTEL

📲 "Unbiased" Imaging

 \mathcal{X}

 Δ

- ☆ Spiskymax = Maximum Entropy Method
- ☆ Pixelized Sky; Background from Model Fitting

~155 total ²⁶Al signal (~3,3Ms@6C)

Signal Still Well Below Imaging Threshold! © COMPTEL GC exposure ~5 INTEGRAL Mission years

Imaging by Model Fits with "pixon" Components (CO,HI, Gaussians)

Imaging Spectroscopy: Validation of Sky Signal

Method: Sky Model (&Bgd) Fitting per Energy Bin -> Spectrum

Perform Identical Analysis on "OFF" Reference Dataset

Key Aspects:

- ☆ Identical Sky and Background Models
- ☆ Different Measurement without ²⁶Al Counts
 - Choose High-Latitude Reference (all pointings b>30°)
 - Match to Pointing/Exposure Scheme of Real Dataset

Expectations:

* "DC-Level"/Offset: Reflects Background Model Accuracy

- Continuum Part Dominates Count Spectrum
- Poor Bgd Fit Increases Apparent Sky Correlation of Data

* Spectral Feature:

- If Instrumental-Background Feature:
 - Spectral Features ~Similar for Both Cases
 - Spectral Feature Mirrors Instrumental Feature (Width, I_{line}/I_{cont})
- If Celestial Signature:
 - Spectral Feature ~Absent for OFF Data
 - Spectral Feature Differs from Instrumental Feature (Width, I_{line}/I_{cont})

Imaging Spectroscopy: Sky Signal Systematics

Variations of Input Models: Background, Sky

Need to Use Reliable Background Time Variability Model; Sky Model ~Uncritical
Width~Stable

²⁶Al Line Shape Studies

Goals

☆ Line Centroid Accuracy
 ☞ Doppler Shifts from Galactic Rotation & ISM Kinematics
 ☆ Line Width Accuracy
 ☞ Average ISM Turbulence in ²⁶Al Source Regions

Challenges

- Absolute Energy Calibration
- Relative Adjustment of Ge Detectors
- Ge Detector Degradation from Energetic-Particle Bombardement (with Annealings)

Imaging Spectroscopy: ²⁶Al Line Shape (1)

* Standard Processed Data

- "ISDC" Energy Calibration, Livetime Correction, Detector Failure Handling
- P No "Corrections" for Degradation & Annealings

SPI's Inner Galaxy Survey

INTEGRAL Core Program: "GCDE"

Inner-Galaxy Observing Times:

GCDE1: ~1 Msec

1

GCDE1+2: ~3.6 Msec

Rev15-225 ~11 Msec

Detailed Assessment in Progress (Bgd Model, Systematics Checks...)

INTEGRAL Internal Science Workshop, Noordwijk (NL), 19 Jan 2005

Roland Diehl

Imaging Spectroscopy: Line Shape Variations in the Galaxy?

graNgcde\gcde123\Rev15-225_1keV_on30\results.spidiffit.r1054.fits

Data Processing & Analysis (Degradation!) Roland Diehl

²⁶Al Line Width Details

Compare Width for Different Sky Models & Par's:

²⁶Al Line Width: Summary

Roland Diehl