Looking for Supernovae remnants in soft γ -rays

The INTEGRAL view

)bjectives

- **Observations of non-thermal SNRs in the core program**
 - PWN
 - G21.5-0.9
 - Kes 75, G11.2-0.3
 - Shell-type SNRs
 - G347.3-0.5
 - Vela Jr (see M. Renaud's talk)
- Studies in the low energy band
 - Special noisy pixels treatment needed
 - Need good correction for Low Thresholds (LT)
- **Results are still preliminary**

SNR, pulsars, SGR, C

j21.5-0.9

21.5-0.9 is a crab like SNR

ctended non-thermal emission in X-rays o thermal shell detected o pulsed emission from CCO


```
(0.5-10 \text{ keV}) is 1.1 \times 10^{-10} \text{ ergs cm}^2 \text{ s}^{-1}
```


Spectral index depends on distance to the core:

up to 1.5 in the centre over 2.5 beyond 50"

j21.5-0.9

521.5-0.9 is detected at >10 σ in the 0-40 keV band.

he total flux obtained F_γ(15-60keV) is 3.6×10⁻¹¹ ergs cm⁻² s⁻¹

Spectrum steeper than X-ray data photon index Γ ~2.4

Flux compatible with PDS observations (*Malizia et al. 2004*)

young PWN & thermal shells X-ray detected PSR Very hard PSR spectrum (Γ~1)

oth are detected in the 20-60 keV band ${}_{\mathbb{R}}^{\mathbb{R}}$

SR is expected to dominate ove a few tens of keV

3347.3-0.5

arge (>40') non-thermal shell first detected by ROSAT right structures on the West and North

(b) ASCA GIS 5-10 keV

X J1714.1-3912:

(Uchiyama et al. 2002)

- absorbed (N_H~1.5 10²² cm⁻²) hard extended emission: Γ ~1
- non-thermal Bremstrahlung of CR in interaction with molecular cloud A

3347.3-0.5

SNR in interaction with a molecular cloud in the West region:

-ray flux positively correlated with column density negatively correlated with spectral index

(Cassam-Chenaï et al 200

) map in the -12km/s<v<-8 km/s Jukui et al. 2003)

istance of SNR: ~1kpc ge : ~ 1.6 kyr mnant of AD386?

ecent detection at TeV energies (HESS (Aharonian et al. 2004)

- CONVOLVED FLUX Extended sources reconstructed flux lower
- Depends on the number of mask elements larger than the source extension

Hux : the case of G347.3-0.5 From XMM 1-10 keV map (*Cassam-Chenai, 2004*), compute shadowgram and estimate loss through ii_skyimage

Reconstructed flux: 12% efficiency

Total expected flux (extrapolation fr X-ray data):

~1.1 count/s in 15-30 keV band

After imaging: ~0.13 counts/sec (peak value)

esults 15-30 keV map

Special treatment of noisy pixels – need correction of LT

Low significance (comparable to the systematics)

Flux: ~0.11 count/s

No significant emission from AX J1714.1-3912

- •Extrapolation: 1.05 c/s
- •Extension: 10' => 60% efficiency
- •Expected flux: 0.6 c/s

3σ upper limit: 3 10⁻⁴ cm⁻².s⁻¹ (15-30 keV)

Strong spectral steepening needed

NR in Galactic

Actes and WNG (621-5-69, Kes 75, G11.2-0.3, PSR B1509) 1 AXP in a shell-type SNR

Still no clear signal from shell-type SNRs

Evidence of emission from Western rim of G347.3-0.5

	Exposure ks	Flux 15-20 keV 10 ⁻⁴ cm ⁻² s ⁻¹	Flux 20-40 keV 10 ⁻⁴ cm ⁻² s ⁻¹	Flux 40-60 keV 10 ⁻⁴ cm ⁻² s ⁻¹
G21.5-0.9	1153	2.74 +- 0.95	3.74 +- 0.42	0.99 +- 0.21
Kes 75	598	0.58 +- 1.16	2.10 +- 0.56	0.96 +- 0.30
Kes 73	770	1.2 +- 0.97	2.68 +- 0.52	1.02 +- 0.25
G11.2-0.3	1438	2.82 +- 0.95	01.5 +- 0.43	0.54 +- 0.21
SN 1006	270	<4.76	<2.46	<1.35
Kepler	1279	<3.59	<1.44	<0.68
W44	254	<5.70	<2.54	<1.40
RCW86	10	<28.0	<16.5	<7.78

ux and upper limits (to be updated):

Conclusions

- G21.5-0.9 is one the brightest visible SNR in the Galactic central regions
 - Clear spectrum steepening compared to X-ray data
- Several PWNe are detected: Kes 75, G11.2-0.3, MSH 15-52
- No clear signal from shell-type SNRs
 - Nothing on Kepler, RCW 86
 - Indications of emission from Western rim of G347.3-0.5
 - No emission from AX J1714.1-3912
 - Extension has to be corrected for
 - Emission from clumps in γ-Cygni (Bykov et al., 2004)
 - Interaction of SNR with molecular cloud
- Future improvements:
 - Extended sources analysis
 - LT correction should enhance sensitivity at low energy

Cygni

Observations of cygnus X1 & Cygnus X3 during PV phase (Bykov et al. 2004)

2 ISGRI clumps in the NW & SE regions in highly absorbed regions ($N_H > 5.10^{21} \text{ cm}^{-2}$) Presence of Ha+N[II], S[II] and O[III] line emission

Interaction of the SNR radiative shock with a nearby cloud?

<u>Cygni</u>

Multiwavelength spectrum

XTE & ASCA (3-15 keV) fitted by a broken PL

- $\alpha = 2.0 + 0.4 \text{ E} < E_b = 11.1 + 1.2 \text{ keV}$
- $\alpha = 1.1 + 0.4 \text{ E} > E_{b}$

Extrapolation in rough agreement with ISGRI data

j0.9+0.1

- Extrapolation of PWN is consistent with the observed flux (20-40 keV)
- Presence of an LMXB close-by
 - Detected by XMM (Sidoli et al. 2004)
- Position consitent with G0.9+0.1 but closer to the binary
- Comparison of GCDE 1 and GCDE 2 data suggests flux variability

Les /3

- es 73 is a young shell-type SNR (<2000 yr) at 6 kpc
- E 1841-045, anomalous X-ray pulsar (AXP): period is 11.8s
- spectral index is 2±0.3
- ne thermal shell is very faint pulsar.
- es 73 is detected at 5 σ in the 20-40 keV (ne integrated flux obtained is (15-60keV) = 2.2×10⁻¹¹ ergs cm⁻² s⁻¹.

pectrum harder than in X-rays

