Galactic y-ray Continuum

with INTEGRAL/SPI

A. Strong, MPE

INTEGRAL/ESTEC Workshop 2005

Core program: Galactic plane survey

4088 pointings from GCDE 1-2-3. Exposure 6 10⁶ sec

Diffuse emission spectral fitting

- Data from 65 INTEGRAL revolutions Core Time
- exposure: 6 10⁶ sec
- energy range 18 1000 keV
 - Fitted components:
 - Background / pointing
 - Sources : 91 from IBIS -
 - Disk (HI + CO), bulge

HI

Bulge e⁺e⁻ annihilation

DATA

MODEL

IBIS Sources

Lebrun et al. 2004 Nature 428, 293

Example of time-dependence of background determined by *spidiffit*, *E*=108-118 keV Using detector ratios template

Source fluxes 28-38 keV

Very few sources have hard spectra like Cyg X-1, most cut off. Only a few detected > 200 keV. So > ~ 200 keV, sources are a *minor component*, hence including all IBIS sources gives too much freedom. *Including many sources leads to 'glow' from whole population*, *simulates diffuse emission, indistinguishable from real diffuse.* >> At high energies, fit without/with few sources !

		Diffuse emission fitted :		
Energy Range w	ith sources	without sources	with 5 sources	with 14 source
268 - 518 keV	3σ	16 0	. 13 <u>o</u>	9.3σ
338 - 498 keV	2σ	10σ		
518 - 768 _. keV	. 0.4 <u></u> σ	. 4 <u></u> o	3.3 <u></u> ס	
768-1018 keV	. 1.4 <u></u> σ			

Diffuse Emission and Sources in Galactic Ridge

cf. 2 -10 keV (Grimm 2002): Sources 2 10³⁹ erg s⁻¹

IBIS: Terrier et al. 5th INTEGRAL Workshop

Morphological decomposition

Hard X-rays from inverse Compton?

Inverse Compton can explain 10 - 30% in SPI range....but electron spectrum could be steeper, then could produce more.....

Multicomponent ("pixon") images 10 components : HI + CO + 8 Gaussians (5°-80° FWHM)

long (deg)

508 - 514 keV

long (deg)

SPI maximum entropy skymaps

268-393 keV

positronium

INTEGRAL / SPI

CGRO / COMPTEL

CGRO / EGRET

268 - 393 keV

393 - 518 keV

Comparison of SPI and COMPTEL skymaps

INTEGRAL/SPI 143 - 268 keV

Hard X-ray emission *more concentrated* to inner Galaxy than for MeV ?

Reflects different origin?

Hard X-rays: Source population like LMXB

COMPTEL 1 – 3 MeV

GCDE 1+2+3 SPI maximum entropy

18-28 keV

38-48 keV

28-38 keV

48-58 keV

Longitude/latitude profiles from maximum entropy method

143-268 keV

268-393 keV

393-518 keV

Origins of interstellar emission

Thermal: 10 keV exceeds escape energy for gravitational containment & implies large power to replenish hot gas.

Non-thermal: electron bremsstrahlung very inefficient due to ionization losses X-ray luminosity 10³⁸ erg s⁻¹ needs 10⁴² erg s⁻¹ particle input, > total SN, cosmic-ray power !

Possible mechanisms

In-situ acceleration of suprathermal electrons from thermal pool (Dogiel) In-situ acceleration of secondary electrons by interstellar turbulence (Schlickeiser) Continuous acceleration in SNR (Yamasaki)

Unresolved (& unknown) point-source populations

Is 'diffuse emission' from unresolved sources ? Can estimate based on 2 - 10 keV luminosity function from RXTE: Grimm et al (2002): A&A 391, 923 700 LMXB+HMXB in Galaxy > 10³⁴ erg s⁻¹ (217 detected, 190 > 2.10³⁵ erg s⁻¹) Total luminosity 2-3 10³⁹ erg s⁻¹ 'dominated by 5 - 10 brightest sources'

L(LMXB=10 L(HMXB))

LMXB: $N(L) \sim L^{-1.26}$ HMXB: $N(L) \sim L^{-1.64}$

 $L = 10^{34} - 2.7 \ 10^{38} \ \text{erg s}^{-1}$

simulation: 700 sources: choose limit so 90 (cf. IBIS) detected. ~1% of flux is in undetected sources.

<< SPI 'diffuse' / detected sources below 50 keV but rather sensitive to model

Next steps:

Use all public + Core Time data

Update source catalogue

Analysis with with more diffuse components

Prepare publication

END