GCDE point sources catalog with SPI

• Bright X-ray galactic X-ray sources (Neutron stars and black holes) are concentrated towards the Galactic Center region.

- The SIGMA/GRANAT telescope has completed the last survey of the Galactic Center at energies above 40 keV, 8 years ago.
- One of the aim of SPI is to perform high-resolution spectroscopy as well as imaging of astrophysical sources between 20 keV and 8 MeV.
- INTEGRAL with SPI and IBIS are carrying out a new hard X-ray/soft gamma-ray survey with a higher sensitivity.
- Actually, SPI represents the best compromise in terms of angular resolution (imaging), energy resolution (spectroscopy) and sensitivity above 100 keV.

These motivate the present study :

Catalog of sources/ Individual sources study

Data analysis

- Imaging with SPI: The necessity to use dithering to obtain images/spectra results in heavy mathematical methods
- Along with the necessity of the background modeling (variability), source variability must also be introduced (at least for strong sources like 4U 1700-377, Sco X-1, etc..)
 - Systems to be solved has a huge number of unknowns(flux per source and per time window) and increase with data size (science windows)

Results

- Catalogue of sources using SPI at various time scale
 - On short time-scale (per revolution) by correlation of excesses in each images (Munich presentation)
 - But must contains artefacts!
 - Long time-scale (several revolution, GCDE1+2)

Search for sources using no prior information for GCDE 1-

- In order to test the technique the basic analysis was performed without using prior information about known sources. The prior is introduce progressively
- Sky regions
 - 1) whole raw data to build a sum image.
 - 2) raw data are divided in 3 subsets (namely positive, negative and central longitude), that have more or less equal duration, according to the average galactic longitude of each revolution.
- For each data set, we build images in 7 energy bands :20-27, 27-36, 36-49, 49-90, 90-166, 166-300, 300-542 keV
- Finally, we build and analyse 28 sky images
- Correlation in energy : "looks like" spectrum
- Spatial correlation : The field-of-view of these 3 data subsets overlap partially even if the data used are independent. Thus a source can be seen, at the same energy, in several images.
- Finally, we detected 87 excesses/ sources

Whole image : sources detected above 7 standard deviation (std)

Number of sources N	Associated with a known	New / artefact
detected above 7 std	source	
N > 20 keV	65	12
N > 27 keV	62	10
N >36 keV	48	2
N > 49 keV	19	0
N >99 keV	11	0

Energy band : 49-99 keV

std	P1		P2		P3		WHOLE	
	Identified	Unknown	Identified	Unknown	Identified	Unknown	Identified	Unknown
4	9	7	7	2	12	10	26	9
5	8	1	3	0	10	2	17	2
6	3	1	3		9	0	11	0
7	3	0	3		8		10	

MAXIMUM LIKELIHOOD ANALYSIS

In this analysis, the sources variability is not taken into account,

it explained in most part the high χ^2 value at low energy (below ~ 50 keV)

2J-JU REV IIIaye (2 105)

this new analysis, we add data GCDE 1 + GCDE 2 +public data on GCDE. The sources osition is fixed.

50-150 keV (2 Ms) (std > 5)

150-300 keV (2Ms) (std > 4)

000	20.000	10.000	0.000	350.000	340.000	330.000	3
20.000							
15.000							
-10.000							
5.000		\odot					
F 000		GS 1826-24					
0.000		GKST	26-236 1(R) 7+6+32				
		CBEL	1E1740.7-2942	401700-377			
5.000							
10.000							
15.000							
20.000							

400-600 keV image (2 Ms)

Std > 3.5

New analysis

- Improvement of background modelling and SCWs selection.
- Spectrum of each source and light curve for strongest sources on time scale of pointing, day, revolution

Limitations of imaging with SPI

 Sources variability is not incorporated in the imaging process for sources search, this can pose problem for weak sources detection.

• Light curves and spectra

- A sources catalog is used as input (fluxes extraction)
 - Can not include the variability on time scale of a pointing, even for large set of data as the GCDE survey for all the sources

SCO A-I / Revolution I IU

4U 1700-377 / GCDE 1+ GCDE 2 +Public data

4U 1700-377 and SCO X-1 vary on time scale of 8 hours

Perspectives

- Galactic soft gamma-ray total point source continuum (Problem related to diffuse galactic continuum)
- High energy spectra and light curve of each sources
- Sources spectroscopy (not exploited yet)
 - systematic search of absorption/ emission line
- Statistic studies
 - Sources population (LMXBs, HMXBs, Neutrons stars, black holes, etc.)
 - Log N -log S
- Correlation of SPI excesses with MeV sources (EGRET)
 - Same method used between 20 keV and 1 MeV can be used above 1 MeV to build source catalogue