Science with the OMC

J. Miguel Mas-Hesse

on behalf of the OMC consortium

INTEGRAL Workshop

ECTEC Jonuany 10th 2005

OMC: An Optical Monitoring Camera for INTEGRAL

OMC provides simultaneous optical photometry of the high energy sources being observed by IBIS, SPI and JEM-X

INTEGRAL Workshop January 18th, 2005

 It monitors also up to 100 potentially variable sources within its FoV in each pointing

OMC main properties

Field of view Aperture Focal length **Optical throughput** CCD pixels Angular pixel size System point spread function CCD quantum efficiency Time resolution Typical integration times Wavelength range Limiting magnitude Sensitivity to variations

 $5^{\circ}\times5^{\circ}$ 50 mm 153.7 mm (f/3.1) > 70 % at 550 nm 1056 x 2061 (1024 x 1024 image area) 17".5 x 17".5 Gaussian with FWHM \approx 1.4 pix 88 % at 550 nm > 3s10 - 200 sV filter (centered at 550 nm) < 17 (V) (10×100 s, 3σ) $\Delta V = 0.005$ (V=9) to $\Delta V = 0.15$ (V=16) (depending on crowding)

Using OMC data

- OMC provides following data:
 - Photometrically calibrated CCD sections centered on the source of interest
 - Standard sections of 11x11 pixels (3'x3').
 - Mosaic of 5x5 sections of 11x11 pixels each (15'x15') for sources without accurate coordinates
 - Integration times sequence of 10 50 200 s (formerly 10 60 100 s)
 - Astrometric plate solution with an accuracy $\sigma = 0.08$ pix (=1.5") [from OSA 5.0 onwards]
 - Pipeline extracted lightcurve with 630 s sampling
 - Interactive analysis tools to modify the sampling of the data.

Example 1: X0115+634

Large window obtained in *trigger* mode

V ~ 15

INTEGRAL Workshop

January 18th, 2005

OMC provides the long term monitoring, allowing to compare the optical emission in normal and outburst modes.

INTEGRAL Workshop January 18th, 2005

X0115+634

REVOLUTION	FLUX [e/s]	COMMENTS
31	7.8 ± 1.0	Science 100s
92	7.3 ± 0.9	Science 100s
181	10.5 ± 1.3	Science 100s
189	11.1 ± 1.1	Science 100s
234	$\textbf{9.4}\pm\textbf{2.5}$	Trigger (noisy)
238	10.3 ± 2.8	Trigger (noisy)
238	11.6 ± 1.3	Science 200s

There has been an increase in optic emission of around 40% compared revolutions 31 - 92.

X0115+634

OMC provides also the short term variability of the source, and allows to compare the optical and high energy variability patterns.

INTEGRAL Workshop January 18th, 2005

X0115+634

PERIOD = 7h 49m + - 5m15 14 13 FLUX_3 [e/s] 11 10 9 8-0,2 0,2 0 0,4 0,8 0,6 1 PHASE

Fourier analysis yields a most likely variability period around 7h 49m, though the periodicity is not very clean.

INTEGRAL Workshop January 18th, 2005

Example 2: V0332+53

Just being studied. V \sim 15.5.

INTEGRAL Workshop Ja

January 18th, 2005

Example 2: V0332+53

V 0332+53

INTEGRAL Workshop Ja

January 18th, 2005

Difficulties (I)

- OMC flat field evolves relatively fast. Calibrations every 6 weeks are not enough to provide ideal flat fielding.
 - There is a residual photometric uncertainty associated to the dithering patterns.
 - Variability below 15% associated to the dithering periodicity is suspicious.
- Photometric extraction in crowded fields is difficult.
 - The standard pipeline is not always able to recover the photometry in crowded fields.
 - Field rotation might induce significant errors in these cases.
 - Manual extraction has to be performed in these cases, assuring that the contributions by nearby stars are properly removed, if at all possible.

Difficulties (II)

- Standard pipeline extracts 1 photometric point every 10 minutes, combining long and short integrations.
 - For weak sources, more accurate results are obtained combining only the longest integrations available.
 - It is strongly recommended to use the interactive tools to improve the accuracy by optimizing the sampling.
- For high energy targets without accurate coordinates only CCD mosaics are provided, centered on the expected source coordinates.
 - The standard pipeline is not able to extract the photometry without accurate (~1') coordinates.
 - Calibrated mosaics have to be analyzed by hand. The accurate astrometric solution will be very helpful for that.

Example 3: 3C273

OMC photometry of 3C 273 is affected by a nearby star. The optimized extraction algorithms provide nevertheless a reliable lightcurve.

INTEGRAL Workshop January 18th, 2005

3C273

OMC provides the long term optical lightcurve, showing that 3C273 has stayed within \pm 0.1 V mag. in the last 2 years.

INTEGRAL Workshop January 18th, 2005

Example 4: Optically variable sources

INTEGRAL Workshop

January 18th, 2005

- Almost 70.000 individual sources monitored up to now
- More than 400 targets with more than 500 photometric points
- Almost 9.000 targets with more than 50 photometric points (600 s each)

Only less than 200 sources have been analyzed in detail up to now by the OMC team. Don't hesitate to ask for help if needed!