Imaging the sky with the IBIS Compton mode.

Michael FOROT Philippe LAURENT

Presentation of the IBIS Compton Mode

The Compton mode uses the temporal coincidence of events both detected on ISGRI and PICSIT.

The coincidence window is about 1.9 ms

Definitions: Compton selection and spurious events

- $\cos(f) = 1 m_e c^2 / E_{ISGRI} + m_e c^2 / (E_{ISGRI} + E_{PICsIT})$
- cos(?) = AB.x where AB is along the direction between the two interaction points and x is the telescope axis.
- Thus a Compton event can be selected if: $|\cos(? -f)| < \cos(q_{lim})$ with $q_{lim} = 19^{\circ}$
- Spurious events are single events detected in ISGRI and PICSIT during the coincidence window duration, and not due to Compton scattering.

$Crab \ \Delta \phi \ diagram$

How we proceed ?

- Compute for each event the $\Delta \phi$ value.
- Fill ISGRI detector map with events in a given $\Delta \phi$ bin.
- Deconvolve this shadowgram and compute the Crab count rate.
- Do the same for the spurious events file.
- Compare the Crab count rate for true and spurious data in a given $\Delta \phi$ range.

$\begin{array}{l} Crab \ \Delta \phi \ diagram \\ (450-650 \ keV) \end{array}$

Rev. 102-103-170 (130 000 s)

Black : all events $\Delta \phi$ Blue : spurious events

After spurious events removal

Crab: 0.022 cts/s

Crab Δφ diagram (300 – 450 keV) Rev. 102-103-170 (130 000 s)

 $\Delta \mathbf{0}$

Black : all events Blue : spurious events

After spurious events removal Crab: 0.053 cts/s

Imaging the sky...

- ISGRI shadowgram of Compton events are used to make images of the sky.
- Spurious events must be substracted to avoid false detections.
- Images can be made between 200 keV and 5 MeV.
- Uniformity correction has to be applied.

Uniformity correction

Compton shadowgram not uniform! A correction (gaussian fit) must be applied.

Spurious correction

- Correction = (ISGRI shadowgram) $\times \alpha$ R₀ = Count rate of ISGRI events in coincidences with PICSIT single.
- R₁ = Count rate of ISGRI events in coincidences with PICSIT multiple.

$$R_0 = \frac{(2\Delta T - \boldsymbol{d}T)R_{CDTE}R_{PIS}}{1 + (2\Delta T - \boldsymbol{d}T)(R_{CDTE} + R_{PIS})}$$

$$=\frac{(2\Delta T - \boldsymbol{d}T)R_{CDTE}R_{PIM}}{1 + (2\Delta T - \boldsymbol{d}T)(R_{CDTE} + R_{PIM})}$$

$$_{DTE} = R_{ISGRI} + R_0 + R_1$$

$$\boldsymbol{a} = \frac{R_0}{R_{CDTE} - R_0 - R_1}$$

(Segreto et al. 2003)

 R_{c}

 $\alpha = 2.83\%$ (Rev 39 $\Delta T = 5.3\mu s$)

 R_1

 $\alpha = 1.04\%$ (Rev 102 $\Lambda T = 1.9 \mu s$)

Crab SN ratio

SN ratio: 200-250 keV: 20.1 s 250-300 keV: 10.7 s 300-400 keV: 7.2 s 400-500 keV: 4.7 s **Time = 500 ks**

Crab pulsar (200 - 250 keV)

Conclusion and perspectives

- Crab detections from 200 keV to 500 keV
- SN ratio has to be improved by RiseTime selection and background map substraction.
- This imaging software will be delivered with OSA 5.
- On board selection effects on the SN ratio.