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1 Introduction 

IBIS (Imager on Board the INTEGRAL Satellite; Ubertini et al. 2003, A&A, 411, L131) is one 

of the two prime instruments of the INTEGRAL scientific payload. This γ-ray telescope 

working in the energy range from ∼15 keV to several MeV, observes various celestial objects 

from galactic X-ray binaries and cataclysmic variables, to active galactic nuclei and clusters of 

galaxies. It has powerful diagnostic capabilities: fine imaging with localization of weak sources 

to within a few arcminutes, and good spectral sensitivity and resolution in the continuum and 

emission lines. These are overviewed in Table 1. 

 

Table 1. IBIS technical specifications 

Operating energy range 15 keV - 10 MeV 

Continuum sensitivity1 

(ph cm-2 s-1 keV-1) 

2.85  10-6 @ 100 keV 

1.6  10-6 @ 1 MeV 

Line sensitivity2 

(ph cm-2 s-1) 

1.9  10-5 @ 100 keV 

3.8  10-4 @ 1 MeV 

Energy resolution (FWHM) 
8% @ 100 keV 

10% @ 1 MeV 

Angular resolution (FWHM) 12’ 

Point source location accuracy 

(90% error radius) 

1’ for SNR = 30 (ISGRI) 

3’ for SNR = 10 (ISGRI)  

5–10’ for SNR = 10 (PICsIT) 

Timing accuracy 61 s - 1 hr 

Field of view 
8.33̊ × 8.00̊ (fully coded)  

29.11̊ × 29.42̊ (zero response) 

  1 Based on in-flight measurements; 3σ detection in105s, ∆E=E/2 

  2 For a 3 detection in 106 s      

 

Imaging is performed using a coded mask. There are two detectors operating simultaneously: the 

Integral Soft Gamma-Ray Imager, ISGRI, a semi-conductor array optimised for lower energies 

(18 keV – 1 MeV), and the PIxellated Ceasium Iodide (CsI) Telescope, PICsIT, a crystal 

scintillator for higher energies (175 keV – 10 MeV). Figure 1 shows the total effective area of 

the two detectors as a function of energy, where absorption by parts of the instrument above the 

detector plane is taken into account. 

In the following sections we provide detailed descriptions of the components that make up the 

IBIS telescope (§2), of how the instrument works (§3), and of its overall performance (§4). 

Some practical examples, calculating observing times and expected detection significances, are 

intended to provide help to prospective observers (§5). 

More details on all aspects of IBIS and INTEGRAL are found in the A&A special issue (2003, 

Vol. 411). More specifically, for descriptions relating to the IBIS data analysis, see Goldwurm et 

al. 2003 (A&A, 411, L223).  

http://adsabs.harvard.edu/abs/2003A%26A...411L.131U
http://adsabs.harvard.edu/abs/2003A%26A...411L.223G
http://adsabs.harvard.edu/abs/2003A%26A...411L.223G
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The validation reports of the Off-line Scientific Analysis (OSA) software, as well as 

descriptions of the data analysis modules and pipeline can be found in the IBIS Analysis User 

Manual from the ISDC web site: http://www.isdc.unige.ch 
 

 

Figure 1: Ancillary response function: ISGRI (blue) and PICsIT (single: red, multiple: green). 

http://www.isdc.unige.ch/
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2 Description of the instrument 

2.1 The telescope 

IBIS is a γ-ray imager operating in the energy range from 15 keV to 10 MeV. This range is cov- 

ered by two simultaneously operating detectors located behind a Tungsten mask that provides 

the encoding by modulating the flux from astrophysical sources. 

The coded mask is optimised for high angular resolution. As diffraction is negligible at γ-ray 

wavelengths, the angular resolution of a coded-mask telescope is defined by the ratio of the 

mask element size (11.2 mm) and the distance between the mask and the detection plane 

(3.2 m). It is given by: tan-1 (11.2/3200) = 0.2 degree or 12 arcminutes (FWHM).  

The detector is composed of two pixellated detecting layers: ISGRI (Lebrun et al., 2003, A&A, 

411, L141) and PICsIT (Labanti et al., 2003, A&A, 411, L149). The first is made of Cadmium- 

Telluride (CdTe) solid-state detectors, and the second of Cesium-Iodide (CsI) scintillator 

crystals. This configuration ensures a good broad continuum and line sensitivity over a wide 

spectral range, and allows the paths of photons to be traced in three dimensions if the event 

triggers both ISGRI and PICsIT within 1.9 μs. The application of Compton reconstruction 

algorithms to these types of events (above a few hundred keV) allows, in principle, an increase 

in Signal-to-Noise Ratio (SNR) by rejecting events that are unlikely to come from the source. 

 

Figure 2. Cutaway drawing of the IBIS detector assembly together with the lower part of the 

collimator (‘‘Hopper’’). The coded mask (not shown) is located 3.2 m above the ISGRI detector 

The detector aperture is restricted to the hard X-ray part of the spectrum by passive shielding 

covering the distance between mask and detector plane. An active Bismuth Germanate Oxide 

(BGO) scintillator Veto system shields the detector bottom as well as the sides of the detector, 

up to the bottom of ISGRI (see top of the tube walls). 

http://adsabs.harvard.edu/abs/2003A%26A...411L.141L
http://adsabs.harvard.edu/abs/2003A%26A...411L.141L
http://adsabs.harvard.edu/abs/2003A%26A...411L.149L
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2.2 The imaging system 
2.2.1 Collimator 

In order to maintain the low-energy response of IBIS when dithering (see Mission Overview, 

Policies and Procedures), the collimation baseline consists of a passive lateral shield that limits 

the solid angle, (and thus the cosmic γ-ray background), viewed directly by the IBIS detector in 

the full field of view up to a few hundred keV. The tube collimation system is implemented with 

three different devices: 

Hopper: Four inclined walls starting from the detector unit with a direct interface to the IBIS 

detector mechanical structure. The inclination of the hopper walls should ideally be such that the 

area laid out by the bottom of walls matches the mask size, but the true inclination takes into 

account the presence of the Calibration System and the mechanical constraints. The hopper 

walls reach 550 mm out from the ISGRI top plane (850 mm from the PLM base) while the 

actual height is 530 mm. The shielding effect is obtained with Tungsten foils embedded in the 

four hopper walls. The hopper walls thickness is 1 mm. The hopper is not physically connected 

to the structure of the Payload Module (PLM).  

Tube: The Tube is formed of four payload module walls, and shielded by lead (Pb) foil that is 

glued on. Two of the tube walls ( Z axis) are inclined (by about 3.5 to the vertical) in order to 

follow as closely as possible the inclined tube shape, whilst the Y-axis walls are vertical. In 

particular the actual inclination of the Z walls is defined by the interface requirements with the 

hopper: the Z Tube walls stop at 20 mm in the horizontal plane from each upper edge of the 

hopper walls, i.e., at 850 mm from the base of the PLM. 

Mask side shielding: Four strips of 1 mm thick Tungsten, provide shielding from the diffuse 

background in the gaps between the mask edges and the top of the tube walls. 

 
2.2.2 The mask assembly 

The IBIS Mask Assembly is rectangular with external dimensions of 1180  1142  114 mm3, 

and consists of three main subsystems: the Coded Mask, the Support Panel and the Peripheral 

Frame with the necessary interface provisions. 

Coded Mask is a square of size 1064  1064  16 mm3 made up of 95  95 individual square 

cells of size 11.2  11.2 mm2. The cells form a Modified Uniformly Redundant Array (MURA) 

coded pattern of 53  53 elements (see Figure 3). Approximately half of the cells are opaque to 

photons in IBIS’ operational energy range, offering 70% opacity at 1.5 MeV. The other half of 

the cells are “open”, with an off-axis transparency of 60% at 20 keV. 

Support Panel includes additional elements to support the mask, providing the necessary 

stiffness and strength to withstand the launch and the in-orbit operational temperatures.  

Peripheral Frame reinforces the sandwich panel and provides the mechanical interfaces with 

the PLM. 

2.3 Detector assembly 

The detector layers are naturally located “under” the coded mask: ISGRI is above and PICsIT is 

below, separated by 9 cm. 



 

INTEGRAL 

IBIS Observer’s Manual 

Doc.No: INTG-AO-00034 

Issue: 1.0 

Date: 17. February 2021 

Page: 11 of 30 

 

 

 

2.3.1 Upper detector layer: ISGRI 

Cadmium Telluride (CdTe) is a II-VI semi-conductor operating at an ambient temperature;  

0° ± 20° C is the optimum range. As CdTe detectors can be made to have a relatively small 

surface, they are ideally suited to build a pixelated imager with good spatial resolution. On the 

other hand, their small thickness (necessary to achieve good energy resolution) restricts their use 

to the low energy domain (50% efficiency at 150 keV). Providing spectral performances 

intermediate between those attained by the cooled Germanium spectrometers (SPI) and the 

scintillators (PICsIT), CdTe can be used in the low energy domain down to 12 keV, and very 

reliably down to 18 keV for data at the beginning of the mission and down to 25 keV in 2014. 

The deterioration of the CdTe with time causes a loss in gain (more details in section 4.2). 

The CdTe layer is made of 8 identical Modular Detection Units (MDUs; see Figure 3) each 

having 2048 pixels read out by 512 Application Specific Integrated Circuits, ASICs (4 channels 

per ASIC). Each MDU is connected independently to a Detector Bias Box (DBB) and to a 

Module Control Electronics (MCE) system that ensures the A/D conversion and provides other 

on-board processing such as event filtering and active pixel monitoring. 

The specifications of the ISGRI layer are: 

• Pixel (CdTe crystal) dimension: 4 x 4 mm2, 2 mm thick 

• Spacing between pixels: 600 m (4.6 mm centre-to-centre) 

• Minimum assembly: polycell of 16 pixels (4 x 4) 

• MDU: 128 polycells (16 x 8) 

• Layer: 8 MDUs (total of 8 x 64 x 32 pixels) 

• Total sensitive area: 2621 cm2 (16384 x 16 mm2). 

The CdTe layer is about 15 mm thick and is located at 294 mm above the PLM base plane.  

   
Figure 3. The IBIS coded mask model (left), and ISGRI and PICsIT detector module structure. 

 

2.3.2 Lower detector layer: PICsIT 

Caesium Iodide (CsI) is a I-VII scintillation crystal. The main characteristics of the layer are: 

- Pixel (CsI) crystal dimension: 8.4  8.4 mm2, 30 mm thick 

- Spacing between pixels: 800 m (9.2 mm centre-to-centre) 

- Minimum assembly (ASIC): 16 pixels (4  4) 
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- Module: 32 ASICs 

- Layer: 8 Modules (total of 8  32  16 pixels) 

- Total sensitive area: 2994 cm2 (4096  71 mm2) 

The CsI(Tl) bars are optically bonded to custom-made low-leakage silicon PIN photodiodes. 

The design provides a high degree of modularity. The CsI(Tl) layer is divided in 8 rectangular 

modules of 512 detector elements, each module being integrated into a stand-alone, testable sub-

system. The CsI modules have the same cross-sectional shape as those of the CdTe (Figure 3). 

2.4 Veto shield system 

The Veto system (Quadrini et al. 2003, A&A, 411, L153) is crucial to the operations of IBIS, 

because it is used as part of the anti-coincidence system to discriminate against background 

particles and photons propagating through, or induced within the spacecraft. 

The sides of the telescope up to the ISGRI bottom level and rear of the stack of detector planes 

are surrounded by an active BGO Veto shield. Like the detector array, the Veto shield is 

modular in construction. There are 8 lateral shields (2 modules per side), and 8 bottom modules. 

Each Veto Detector Module (VDM) includes: 

• the BGO crystal and related housing 

• two photomultiplier tubes (PMTs) optically coupled to the BGO and assembled with the 

dedicated Front End Amplifiers and High Voltage (HV) divider 

• one HV Power Supply  

• one Veto Module Electronics box for Module control 

• internal harness 

The high density and mean Z of the BGO ensure that a thickness of 20 mm is sufficient to 

significantly reduce the detector background (caused by leakage through the shielding of cosmic 

diffuse and spacecraft-induced γ-rays), to less than the sum of all other background components. 

2.5 Electronics 

2.5.1 Analogue Front End Electronics (AFEE) 

Charge collection, signal filtering and amplification are all performed by the Application 

Specific Integrated Circuits (ASICs) on both ISGRI and PICsIT. In ISGRI, the 16384 individual 

detector units (pixels) are grouped into hybrid circuits called polycells, which are the basic 

assembly unit of a detector module, receiving a signal from 16 detectors via 4 ASICs. 

 

2.5.2 Module Control Electronics (MCE) and PICsIT Electronic Box (PEB) 

The MCE and PEB perform receipt, checking and execution of telecommands for ISGRI and 

PICsIT, respectively. They also collect and format the housekeeping data and process the ana-

logue and digital data (energy and rise time). An important function of the MCE is to monitor 

the CdTe noise levels.  

In-flight, a CdTe detector can become noisy and trigger the relevant MCE too frequently, 

causing a large dead time with unacceptable loss of photons. Therefore, the MCE monitors in 

real time the relative counting rates of each CdTe polycell. If a polycell exhibits noise, the MCE 

will, if necessary, switch it off. It can subsequently be reactivated and checked from the ground. 

http://adsabs.harvard.edu/abs/2003A%26A...411L.153Q
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2.5.3 On-board calibration unit 

After 12 years in orbit, the on-board collimated radioactive 22Na calibration source has been 

disabled and has no more use. 

 

2.5.4 Digital Front End Electronics (DFEE) and FIFO 

The DFEE is situated behind the AFEE and processes the ASICs output for the First-In, First-

Out (FIFO) data manager. FIFO sorts the events from different modules according to their true 

arrival time in the detector plane for transmission to the DPE/HEPI (see next section). The 

DFEE also monitors the FIFO and instructs it when to send data to the DPE. 

 
2.5.5 Data Processing Electronics (DPE) and Hardware Event Processor (HEPI) 

The detector electronics chain ends at the DPE and the HEPI. The HEPI performs the data his-

togram-ing and generates the data structures for the DPE. The DPE handles all the interfaces 

between the instruments and the spacecraft for both uplink and downlink. For example, it 

handles the packet-ing of data for the On-Board Data-Handling System before transmission to 

the ground. 
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3 How the instrument works 

3.1 Detection 

Photons are detected in IBIS by several methods (Figure 4): 

Detection in ISGRI: a photon is stopped in a single pixel of the semi-conductor, generating an 

electric pulse. Each photon that penetrates a CdTe pixel in ISGRI, ionizes the material and 

creates electron and hole pairs. In the polarizing electric field (bias voltage), the light and 

negatively charged electrons travel towards the positive electrodes faster than the heavier holes 

moving in the opposite direction. The current created by the movement of the charges induces a 

pulse whose height, for a fixed depth of interaction, is directly proportional to the number of 

electron-hole pairs. For interactions deep in the detector the pulse height decreases due to less 

efficient charge collection, while pulse rise time increases. For further details see Limousin et al. 

2001, NIMPR A, 471, 174. 

The detector coordinates, the pulse height and the rise time of each event are stored in the form 

of a list (raw data) from which, through the use of two look-up tables, the deposited energy of an 

event can be reconstructed; the first one is used to transform the pulse height from a number of 

channels to an energy in keV by applying the gain correction appropriate to each pixel, while the 

second combines the rise time and pulse height information to determine the charge loss 

correction that should be applied to recover the event energy. This effect will be corrected with a 

time-dependent correction computed using a detailed ISGRI model in a future version of OSA. 

 

 

Figure 4. Detection efficiency evaluated by Monte Carlo simulation. 

http://adsabs.harvard.edu/abs/2001NIMPA.471..174L
http://adsabs.harvard.edu/abs/2001NIMPA.471..174L
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Detection in PICsIT: a photon passes through ISGRI and is stopped in PICsIT, generating one or 

more scintillation flashes. PICsIT distinguishes detections that occur in only one pixel (single 

events), from those that occur in more than one (multiple events). 

The energy of the incident photon is derived in each crystal bar from the intensity of the flash 

recorded in the photodiode. For multiple events, it is derived by summing the energies derived 

from the intensity of each of the flashes. The energy resolution of PICsIT is a function of the 

SNR of the events, the electronic noise at low energies and the light output. 

Detection in both ISGRI and PICSIT (Compton mode): Photons that interact in either ISGRI or 

PICsIT may undergo a Compton scattering, and be subsequently detected in the other layer. The 

energy of Compton events is determined from the sum of energies for the initial event and the 

photon scatter angle. (Data analysis in this mode is not supported.) 

3.2 Imaging 

IBIS has a field of view of 29×29 degrees (Full Width at Zero Response). A source contained 

within this field of view will cast a shadow of the mask onto the detector planes. However, 

given the geometry of the mask and hopper assembly, only for sources within the central 8°×8° 

around the pointing direction the detector is completely illuminated by a section of the mask; 

this defines the Fully Coded Field Of View (FCFOV), whereas the rest of the FOV is called 

Partially Coded Field Of View (PCFOV). 

Since all sources present in the PCFOV contribute to the total detected flux, cross-correlation 

techniques are used to reconstruct the most probable configuration and intensity of the 

individual sources contributing to this flux. 

The portion of the sky surveyed during an observation depends on the dither pattern. For the 

standard 5°×5° dither, the central 17°×17° are always fully coded, and a region spanning about 

38°×38° is surveyed to zero response. 

3.3 Timing 

The ISGRI time resolution is 61.035 μs for each detected event. PICsIT spectra and images are 

accumulated every 1800−3600 seconds depending on dithering time; a spectrum alone (but with 

low resolution, from two to eight energy bands) is available every several ms. 

3.4 Polarimetry 

Multiple events in adjacent PICsIT cells can be used to determine the polarisation of the incident 

photons using the Klein-Nishina cross-section dependence on polarisation angle. However, this 

requires the Polarimetric sub-mode, which is never used because it was not possible to install a 

polarised calibration source on board (due to a lack of time and resources).  

It is also possible to use the ISGRI and PICsIT detector planes in conjunction in order to select 

Compton events, allowing a reconstruction of the incident photon’s polarisation (see Forot et al. 

2008 for more details). Although there is currently no support for Compton analysis in OSA, the 

list of Compton events per science window are distributed together with the ISGRI and PICSIT 

events. 

http://adsabs.harvard.edu/abs/2008ApJ...688L..29F
http://adsabs.harvard.edu/abs/2008ApJ...688L..29F
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3.5  Observing modes  

IBIS has several observing modes for engineering and calibration purposes, but only one for sci- 

entific observations. In science mode, there are no user-selectable parameters, and ISGRI 

registers and transmits photon-by-photon: every event is tagged with its arrival time, energy, and 

position on the detector plane. 

PICsIT can also operate in photon-by-photon mode (PPM), but because of its much higher back- 

ground due to cosmic ray induced events, the limited telemetry does not allow operating in this 

mode because it would lead to important data losses. For this reason, the standard mode for 

PICsIT is histogram mode: registered events are integrated over the pointing duration (spectral 

imaging) or over the detector plane (spectral timing). Note that transmission of PPM events was 

disabled early in the mission, and permanently disabled at the end of revolution 1507. 

For the spectral timing data, both the time resolution that ranges between 0.976 and 500 ms, and 

the number of energy channels can be set from the ground. Currently, PICsIT uses a time 

resolution of 15.625 ms and 8 energy channels: 208–260, 260–312, 312–364, 364–468, 468–

572, 572–780, 780–1196 and 1196–2600 keV. The characteristics of the different observing 

modes for IBIS are summarized in Table 2. 

 

Table 2: ISGRI and PICsIT observing modes 

 

  

Observing Mode Imaging resolution 

(pixels) 

Timing resolution Spectral resolution 

(channels) 

ISGRI photon-by-photon 128x128 61.035 µs 2048 

PICsIT photon-by-photon 

spectral-imaging 

spectral-timing 

64x64 

64x64 

none 

64 µs 

30-60 min 

1-500 ms 

1024 

256 

2-8 
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4 Performance of the instrument 

4.1 Components and sources of instrumental background 

The bulk of the detected photons in both ISGRI and PICsIT are not from the scientific targets 

that are observed. These background photons are of two types: instrumental and astrophysical, 

and their main sources are: 

• for ISGRI at low energies (< 100 keV): cosmic-ray induced fluorescence of the shielding 

elements, and diffuse cosmic γ-ray background 

• for ISGRI at higher energies and for PICsIT: radioactive decay of unstable nuclei created 

by the spallation interactions of cosmic-ray protons and their secondary particles in the 

massive parts of the satellite 

 

Figure 5. ISGRI time-averages intensity background maps in four logarithmically sized energy 

bands: 20-35, 35-60, 60-100 and 100-175 keV. The colour intensity ranges from 0 to 0.018 cps, 

but the maps are re-normalized depending on the count rate in each science window. 

The overall background is strongly influenced by solar activity: it is lowest at solar maximum, 

when a stronger solar magnetic field inhibits the propagation of cosmic rays into the inner solar 

system, and is about twice as high at solar minimum. Veto performance is another major 

influence on background levels. During the Performance Verification Phase, it was found that 

the Veto can help to reduce the count rate by approximately 50% for ISGRI and 40% for 

PICsIT. 

Since the background is strongly energy-dependent below ∼100 keV, background cubes (2D- 

images as a function of energy) are constructed from all available empty fields and high latitude 

observations for each ISGRI energy channel (∼0.5 keV). These are used by default in OSA, 

both for imaging and spectral analysis: the high-resolution maps are combined to match the 

specified energy bands. An example of these background maps is shown in Figure 5. 

From the first instrument activation, bursts in the PICsIT count rate were observed (see Figure 

6). In the time-integrated detector images, they are seen as tracks of bright pixels, indicating that 

these events are related to the interaction of cosmic rays with the detector. The contribution of 

these cosmic-ray induced triggers to the total PICsIT background is of the order of 10%, but 

they mainly affect the low-energy channels below ∼300 keV (up to about 30% of the total 

background). Since in the standard observing mode only histograms are downloaded, this 

introduces non-statistical fluctuations in the data, up to a factor of a ∼2.5 in the SNR. 
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Time-averaged, in-flight background spectra as observed by ISGRI and PICsIT are shown in 

Figure 7. The in-flight count rates are compared to those of the Crab in  

Table 3. 

 

   

Figure 6: Total PICsIT count rate as a function of time (revolution number) at the science 

window level, for single (left) and multiple events (right). 

 

 

     

Figure 7. In-flight background spectra for ISGRI (left) and PICsIT (right). The ISGRI spectrum 

is from empty field observations in revolution 96 (effective exposure time 36.4 ks). For PICsIT 

the single (black) and multiple (red) events contributions to the background are shown 

separately; based on one Science Window of data accumulated in revolution 500.  
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Table 3. Approximate background rates compared to the Crab 

 

 

Energy band 

Background 

(Solar Max) 

cts s-1 

Crab 

on-axis 

cts s-1 

ISGRI: 15-400 keV 600 250 

PICsIT: 

203-252 keV 

252-336 keV 

336-448 keV 

448-672 keV 

672-1036 keV 

1036-1848 keV 

(203-1036 keV; single) 

(336-1848 keV; multiple) 

 

– 

– 

– 

– 

– 

– 

2500 

580 

single 

2.71±0.02 

2.46±0.01 

1.17±0.01 

0.60±0.01 

0.26±0.01 

0.06±0.01 

7.20±0.03 

– 

multiple 

– 

– 

0.07±0.01 

0.14±0.01 

0.14±0.01 

0.12±0.01 

– 

0.47±0.02 

 

IBIS is located next to SPI and JEM-X, both also coded-mask telescopes. Since -rays are highly 

penetrating, it is possible for them to pass through parts of the spacecraft or instrument 

structures, as well as coded masks, and to be detected by the -ray instruments. Therefore, off-

axis -rays with energies above ~300 keV that pass through either the SPI or the JEM-X coded 

masks may cast a shadow of this mask onto the IBIS detectors; the former combination is often 

referred to as the ‘‘SPIBIS’’ effect (see Figure 8). Although this effectively increases the field of 

view of IBIS, a bright -ray source would thus add additional counts and modulation to the IBIS 

histogram, which considerably complicates the image reconstruction. 

The SPIBIS effect was calibrated before launch, but ISOC avoids scheduling observations when 

either of the three brightest sources/regions: the Crab, Cyg X-1 or the Galactic Center region, 

are visible by IBIS through the SPI mask. 

4.2 Instrumental characterisation and calibration 

The ISGRI and PICsIT detectors are calibrated in-orbit on a regular basis. Biannual observations 

of the Crab are performed to enable regular verification of the detector uniformity and energy 

response, and improve the calibration. Continued efforts to improve our understanding of the 

instruments and the mask assembly allow for a steady refinement of the analysis software. At 

present the calibration is good up to a level of a few percent for ISGRI, and about 5% for PICsIT 

at off-axis angles less than ∼10°. This means that in the spectral fits the deviations between the 

observed spectrum and actual model are generally within 2-5%. 
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Figure 8: Left: Off-axis source positions for the SPIBIS configuration as well as the shielding 

tests, during the pre-flight calibrations. Middle and right: PICsIT shadowgrams from 

simulations (middle) and pre-flight calibration data (right). The images are slighhtly offset due 

to the inaccuracy in the supplied source position. 

The instrument characteristics are verified after events such as solar flares. The energy response 

and spectral resolution are monitored on long time-scales at 59.3 keV using the background-

induced Tungsten fluorescence line from the coded mask and hopper walls. 

ISGRI shows a loss of gain of about 3% per year, and additional gain drops (0.6-1%) occurred 

after strong solar flares. Therefore, the data analysis software contains a time-dependent gain 

correction for ISGRI. Variations due to global temperature changes (∼5°) are taken into account 

with an accuracy of 0.5%.  

In OSA 9, the description of the gain drift is based on IREM counters integrated over time, to 

take into account the solar flares. However, with this correction, a clear departure from stability 

was seen in later data. Hence, a new gain drift correction was implemented in OSA 10. 

Taking into account the expected PICsIT gain variation of 0.3% °C−1 measured during on-

ground thermal tests, the average gain (over the whole detection plane) measured in-flight 

indicates that the PICsIT temperature gradient along the INTEGRAL orbit is the dominant 

factor in the observed PICsIT gain variation. The number of disabled pixels in ISGRI is slowly 

increasing by about 50 per year (from 500 in 2008 to 800 in 2014; of 16384 pixels). In PICsIT 

there are about 50 (of 4096 pixels). 

At high energies (>1 MeV), the background so strongly dominates the flux that large amounts of 

data accumulated through routine operations are used to extend the calibration into this regime. 

In 2010, several high-energy missions detected a significant decrease in the flux from the Crab 

nebula that, in fact, appeared to have been steadily decreasing since 2008 (Wilson-Hodge et al. 

2011). Figure 9 shows a light curve of the Crab nebula using only on-axis observations. 

http://iopscience.iop.org/2041-8205/727/2/L40/
http://iopscience.iop.org/2041-8205/727/2/L40/
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Figure 9: OSA 10.2 Crab Nebula count rate time series on-axis (within 30”) in three energy 

bands: 20−35, 35-65, and 65-100 keV, from the start of the mission to January 2017. Each point 

is the estimated count rate based on a single pointing, and thus averaged over 30 to 60 minutes. 

4.3 Measured performance 

4.3.1 Angular resolution and point source location accuracy 

The angular resolution of IBIS is 12’ FWHM. However, a feature of coded masks is that the 

centroiding accuracy for a point source can be much finer, depending solely on the detection 

significance. For ISGRI, the absolute localisation accuracy for sources detected with a 

significance of 100 in the FCFOV is as low as 20”. For a detection significance of 10, the 

localisation radius increases to about 2’. For PICsIT, the PSLA is roughly two times coarser. 
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Figure 10: Left panel: ISGRI point source location accuracy (PSLA; 90% confidence level) in units of 

arc minutes for sources in the FCFOV using an analysis based on ∼40000 science windows is given by: 

31.1(SNR)−1.25 + 0.23 (Scaringi et al. 2010, A&A, 516, 75). The resulting fits are shown for the FCFOV 

(blue) and the PCFOV (red), and are compared with the only previous determination of the PSLA by 

Gros et al. (2003, A&A, 141, L179), that parametrised their fit as: 22.1(SNR)−0.95 + 0.16. Right panel: 

PICsIT PSLA using Crab observations from revolutions 39, 43, 44 and 45. Results for 2 energy bands 

are given (203-252 keV and 252-336 keV). Only detections with at least 3σ in a science window (or 

exposure) are used. The catalogue position of the Crab is marked by a cross, and the size of a PICsIT 

pixel (10’) is indicated by the rectangle. 

4.3.2 Spectral resolution 

The spectral resolution of ISGRI has been measured during pre-flight tests on the engineering 

model, as well as in-flight. Resolutions of 9% at 60 keV (W fluorescence) and 4.6% at 511 keV 

have been measured from early in-flight spectra (17% at 60 keV in 2014). Figure 11 shows the 

earlier spectral resolution determined in-flight.  

    

Figure 11. Left panel: The energy resolution of ISGRI. The solid line shows the theoretically expected 

values, and the stars are values measured before launch using an engineering model. The study of the in-

flight W fluorescence line at 60 keV and the e+/e− annihilation lines at 511 keV (shown as filled circles) 

do not reveal any evidence of a change of the ISGRI spectral performance. Right panel: The energy 

resolution of PICsIT at 511 and 1275 keV as measured in-flight using Calibration Unit (S5) data (shown 

as stars). Also shown are the theoretical expectations as determined from pre-flight tests using an 

engineering model. The electronic-noise values (“Noise”) refer to one ASIC only; a 10% increase is 

expected when extrapolating to the complete detector electronic chain. 

4.3.3 Mask Calibration 

Details such as the presence of screws, and of the amount of glue in various places on the mask, 

can have significant effects on the image reconstruction. This is due to the fact that the model of 

the mask used in the software differs from the actual mask. In order to construct a realistic 

model of the mask from actual observations, much effort has gone into mask calibration. 

Starting with version 9.0 of OSA, improvements of the IBIS/ISGRI imaging software have been 

made by taking into account the presence and exact location of the screws, inserts and glue used 

to hold the mask in place.  This is done by excluding the detector pixels onto which these 

defects are projected by a bright source in the field of view. This operation yields a seven-fold 

improvement in sensitivity around bright sources, which, in turn, allows for the detection of 

much fainter sources (see Figure 12). 

http://adsabs.harvard.edu/abs/2010A%26A...516A..75S
http://adsabs.harvard.edu/abs/2003A%26A...411L.179G
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Even better results will be obtained by taking into account the precise shape, size and thickness 

of the mask defects; this is the aim of the mask calibration efforts. The goal is to measure 

the actual transparency of the mask as a function of energy with a 1% precision, and construct 

a 3D geometrical model of the mask. The empirically accurate model of the mask would then be 

used in the deconvolution process, further refining the image analysis software. This objective 

requires a uniform, effective exposure of 1 Ms over the entire mask, and dedicated observations 

of the Crab, together with scientific observations of the Cygnus region, are used to attain it. 

 

Figure 12: IBIS/ISGRI significance images of a field centred on Cyg X-1. OSA 8, standard colour scale 

(left), OSA 8 with a colour scale saturated to show the ghost residuals (centre) and OSA 9 with the same 

scale as the central image (right). 

4.3.4 Off-axis response 

The off-axis response of the IBIS telescope has been characterized during the Crab calibration 

observations in 2004, 2005 and 2006: the flux of off-axis sources could be underestimated by up 

to 50% in the PCFOV at energies around 20 keV. This loss is linked to the mask supporting 

structure (including the nomex structure), and strongly depends on the angle and the energy of 

the incoming radiation. The correction maps used in the imaging and spectral analysis software 

are shown in Figure 13; the residual off-axis effects after correction are less than a few percent. 

 

Figure 13: Off-axis correction maps based on a detailed nomex geometrical model in the energy bands 

20-35, 35-60, 60-100 and 100-175 keV. In these new maps, there is an important non-axi-symmetric 

component characterized by the star-like shape, which is due to the hexagonal honeycomb structure of 

the nomex. Since these maps are used to correct the count rate, they are normalized to 1. In this example, 

the colour bar scale ranges from 0.71 to 0.83. 
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4.3.5 Sensitivity 

The IBIS sensitivity can be parametrised as follows: 

S = [n2(o+c) + n sqrt[(n(o+c))
 2 +4AB(o-c)

 2TE]] / [A(o-c)
 2TE ] 

In the case of the continuum, the sensitivity is measured in photons cm-2 s-1 keV-1, the efficiency 

(the last term in the equation) is given by =IT, and the variable E is the energy bin size. The 

line sensitivity is measured in photons cm-2 s-1, the efficiency is =p, and the variable E is the 

energy resolution. All other variables in the equation above (in order of appearance) are defined 

below: 

 

• n  is the detection significance in units of sigma 

• o, c are the open and closed mask element transparencies 

• T is the observation duration  

• A is the detector area 

• B is the background count rate in counts cm-2 s-1 keV-1 

• I is the imaging efficiency, a function of the coding noise and dither pattern  

• p, T are the peak and total efficiencies, respectively 

Note that for a broad line with a FWHM of E keV, the sensitivity is reduced by (/E)1/2: the 

square root of the ratio of the energy bin size to the energy resolution. 

Figure 14 shows the sensitivity curves derived from empty field observations, and Tables 4 to 7  

give some of the actual values. Theoretical agree with the observed sensitivities within a factor 

of ~2. This difference is due to systematic effects that increase partly due to long observations 

(>500 ks), and partly due to a large number of sources (this only at low energies). 

Using the standard 5 × 5 dither pattern causes a slight (∼2%) loss in overall sensitivity, averaged 

over the dither pattern, but an important imaging advantage in smoothing out systematic effects. 

This mode is recommended for all observations except under special circumstances that should 

be well motivated and justified. 
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Figure 14: Top Left: ISGRI continuum (black: ph cm-2 s-1 keV-1) and narrow line sensitivity 

(red: ph cm-2 s-1) derived from 77 ks of empty field observations. Top Right: PICsIT statistically 

limited continuum sensitivity is given by the black histograms, from single events (dotted), 

multiple events (dashed), and combined (solid), all scaled to the in-flight background count rate, 

and compared with the sensitivity obtained by scaling from the Crab observation (red; single 

events only). Bottom panels: IBIS broadband sensitivity derived from empty field observations 

for a 3σ detection in 105 s for a continuum source (∆E = E/2; left) and a narrow line (right). 

Systematic uncertainties (e.g., uniformity) are not taken into account. ISGRI covers 15–1000 

keV and PICsIT 200–104 keV (single and multiple). Reference flux is for a power-law with 

spectral index Γ=-2. 
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Table 4. ISGRI continuum sensitivities for an on-axis source 

Energy 

(keV) 

Measured 

SNR (1) 

Expected 

Crab flux (2) 

(ph cm-2 s-1keV-1) 

Measured 

sensitivity (3) 

(ph cm-2 s-1 keV-1) 

Statistically 

limited sensitivity 

(AO5) (3) 

(ph cm-2 s-1 keV-1) 

Ratio 

(meas./AO5) 

20−40  1149 17.9x10-2 27.8x10-6 10.39x10-6 2.6 

40−100  727 10.2x10-2 9.4x10-6 5.02x10-6 1.9 

100−200  196 3.0x10-2 5.2x10-6 3.12x10-6 1.7 

 
(1): Derived from 94.7 ks of Crab observations performed in Revolution 728, using OSA 9 with default 

parameters, except for OBS1_PixSpread=0 and OBS1_SearchMode=3. (see IBIS/ISGRI Validation 

Report available from the ISDC at http://www.isdc.unige.ch). 
 

(2): Using a broken power-law with photon indices 2.07 and 2.24, below and above 100 keV, 

respectively. The flux at 1 keV is 9 ph cm-2 s-1 keV-1 (Jourdain et Roques 2009, ApJ, 704, 17) 
 

(3): Sensitivities for an exposure of 100 ks, E=E/2, 3 at 30, 70 and 150 keV. The different data set and 

spectral model prevent a straightforward comparison between the current sensitivity and the one 

reported in the earlier versions of this document. 
 

Table 5. ISGRI continuum sensitivities 

(105 s exposure, 3 detection, E=E/2) 

Energy (keV) ph cm-2 s-1 

keV-1 

 Energy (keV) ph cm-2 s-1 keV-1  Energy (keV) ph cm-2 s-1 keV-1 

15 12.8 x 10-6  60 6.36 x 10-6  300 6.02 x 10-6 

20 18.0 x 10-6  70 5.02 x 10-6  350 6.90 x 10-6 

25 16.0 x 10-6  80 3.94 x 10-6  400 7.56 x 10-6 

30 10.4 x 10-6  90 3.46 x 10-6  450 8.41 x 10-6 

35 7.54 x 10-6  100 2.85 x 10-6  500 9.83 x 10-6 

40 6.16 x 10-6  150 3.12 x 10-6  600 10.6 x 10-6 

45 5.59 x 10-6  200 4.10 x 10-6  700 11.6 x 10-6 

50 5.40 x 10-6  250 5.03 x 10-6  800 12.7 x 10-6 

 

Table 6. PICsIT continuum sensitivities  

(105 s, 3, E=E/2; single and multiple events) 

Start energy 

(keV) 

End energy 

(keV) 

ph cm-2 s-1 

keV-1 

 Start energy 

(keV) 

End energy 

(keV) 

ph cm-2 s-1 

keV-1 

170 220 7.99 x 10-6  1200 1400 1.88 x 10-6 

220 280 6.06 x 10-6  1400 1800 1.28 x 10-6 

280 370 3.62 x 10-6  1800 2200 1.05 x 10-6 

370 430 3.41 x 10-6  2200 2900 0.59 x 10-6 

430 580 1.90 x 10-6  2900 3500 0.68 x 10-6 

580 720 1.91 x 10-6  3500 4500 0.50 x 10-6 

720 900 1.48 x 10-6  4500 5700 0.32 x 10-6 

900 1200 1.57 x 10-6  5700 7100 0.22 x 10-6 

 

http://www.isdc.unige.ch/
http://adsabs.harvard.edu/abs/2009ApJ...704...17J
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Table 7. ISGRI and PICsIT narrow line sensitivity (106 s, 3 detection) 

Energy (keV) ISGRI line ph 

cm-2s-1 

PICsIT line ph 

cm-2s-1 

 Energy (keV) ISGRI line ph 

cm-2s-1 

PICsIT line ph 

cm-2s-1 

22.5 8.76 x 10-5   566.1 8.40 x 10-5 14 x 10-5 

28.4 6.28 x 10-5   712.6 9.88 x 10-5 22 x 10-5 

35.7 3.92 x 10-5   897.2 11.9 x 10-5 38 x 10-5 

45.0 3.13 x 10-5   1129.5  41x 10-5 

56.6 3.71 x 10-5   1421.9  57 x 10-5 

71.3 3.08 x 10-5   1790.1  82 x 10-5 

89.7 2.17 x 10-5   2253.6  79 x 10-5 

112.9 1.67 x 10-5   2837.1  100 x 10-5 

142.2 1.98 x 10-5   3571.7  130x 10-5 

179.0 2.54 x 10-5 2.3 x 10-5  4496.5  110 x 10-5 

225.4 3.21 x 10-5 2.5 x 10-5  5660.7  200 x 10-5 

283.7 4.27 x 10-5 3.0 x 10-5  7126.5  470 x 10-5 

357.2 5.31 x 10-5 3.8 x 10-5  8971.6  760 x 10-5 

449.6 6.64 x 10-5 5.7 x 10-5     

4.3.6  
4.3.7 Timing  

The time resolution in ISGRI is 61.035 s. For PICsIT, imaging and spectral histograms are col-

lected every 1800−3600 s, depending on the dithering time, which defines the time resolution. 

The spectral timing data of PICsIT (without imaging) is recorded every few ms. The default 

resolution is 15.625 ms, but can take a value between 0.976 and 500 ms.  

The absolute timing accuracy, the barycentric correction to event times measured in IBIS, 

depends on the uncertainty in the spacecraft position, and on the time resolution and time frame 

synchronisation in the instrument and spacecraft subsystems. Calculations give an accuracy of 

61 s within 1 and 92 s within 3. In-flight measurements show that the relative timing 

between instruments is within 10 μs, whereas the absolute timing accuracy is about 40 μs. A 

more accurate calibration might be performed via dedicated millisecond pulsar observations.  

A detailed analysis based on the pulse profile analysis of the accretion powered pulsar (245 Hz) 

IGR J17511-3057 comparing the absolute timing abilities of ISGRI and RXTE’s HEXTE and 

PCA, shows that measurements with these three instruments are consistent with each other at the 

level of 50 μs (Lucien Kuiper, private communication). 

We distinguish between the instrument’s actual detection efficiency, and the delay or 

instrumental dead time that follows each detected event and during which another event cannot 

be recorded. The BGO shielding, calibration source, and Compton coding induce additional 

dead times due to good events that happen to occur during their respective time windows. 

In ISGRI dead time is around 25%, and is due to the combined effects of: 

• Detected ISGRI events (115 μs each) 

• VETO strobe length (ISGRI: 5 μs, PICsIT: 2 μs) 

• Calibration source (negligible) 

• Compton coincidence window for each PICsIT detection (3.8 μs per window; negligible) 

PICsIT dead time is about 5%. For additional details, see the latest version of the IBIS Analysis. 

http://www.isdc.unige.ch/integral/download/osa_doc
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5 Observation ‘‘Cook book’’ 

In this section, there are examples on how to calculate the observation time required to attain 

various scientific aims. For a panoramic view of the science that can be done with INTEGRAL, 

browse the Mission Overview section of the INTEGRAL web site at the following URL: 

http://www.cosmos.esa.int/web/integral. 

5.1 How to calculate observing times 

The approximate signal-to-noise ratio (SNR) for a given exposure can be calculated from the 

sensitivity curves. As shown in §4.3.5, the continuum sensitivity, Scont, scales with SNR, t-1/2, 

and E-1/2; and the line sensitivity Sline as SNR and t-1/2. Therefore, for an observation time, t in 

seconds, ∆E/E, and continuum, Fcont in ph cm−2 s−1 keV−1, or line flux Fline in ph cm−2 s−1, 

we find: 

              

  

SNR(line) = 3 Fline S
line( ) t 106( )

1/ 2

 

Recall that if the line is broader than the energy resolution of the instrument, with a FWHM of 

E, then the signal-to-noise ratio is reduced by (E/)1/2, where E is the instrumental FWHM 

at that energy. 

The above back-of-the-envelope calculation is indicative of what can be achieved. For 

proposals, observer should use the much more accurate on-line Observation Time Estimator 

(OTE) found on the INTEGRAL web site under Observation Tools, as it is the means by which 

ISOC performs this type of calculation when assessing the technical feasibility of a proposed 

observation. 

Continuum sensitivity values given in earlier are for monochromatic fluxes (ph cm−2 s−1 keV−1), 

∆E = E/2, and can be reliably extrapolated to small energy ranges. However, when ∆E is greater 

than E/2, the energy range must be split into smaller energy bands each with ∆E smaller than 

E/2, in order to calculate the SNR or exposure times in each one, and then combine the results to 

get the values corresponding to the initial energy range. OTE does this using an input power-law 

spectral index. 

5.2 Sample calculations 

5.2.1 Example 1: hard X-ray transient at 100 keV 

For a hard transient with a flux of 100 mCrab at 100 keV and a hard power law (photon spectral 

index  of -1) continuum above 100 keV, determine the achievable signal-to-noise ratio at 100 

keV in an energy bin corresponding to the instrument FWHM at that energy. 

Extrapolating the 2-10 keV flux of the Crab to the γ-ray band with a photon spectral index  

=-2.1, the flux at 100 keV of a 100 mCrab source is: Fcont = 6.9 x 10-5 photons cm-2 s-1 keV-1. 

At this energy, only ISGRI can detect the source because it is below PICsIT’s energy range. At 

100 keV, ISGRI’s energy resolution is ∆E/E= 0.08 (see Figure 11), and its sensitivity is given by 

Figure 14 and  as: 

http://www.cosmos.esa.int/web/integral
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Scont = 2.85 ´ 10-6  ph cm-2s-1 keV-1 

If we assume an observation time of 50 ks, t = 5 × 104 s, the equation above yields:  

  

SNRcont = 3 ´ 6.9 ´ 10-5 2.85 ´ 10-6( ) ´ 2 ´ 0.08( )
-1/ 2

´ 5 ´ 104 105( )
1/ 2

= 20.5 

For these parameters and a 5×5 dither pattern, OTE gives a value of 20σ. Note that OTE also 

shows that the source is detectable with a significance of 10σ in 13 ks. 
 

5.2.2 Example 2: hard X-ray transient at 800 keV 

Consider the same source as in Example 1, but at  800 keV. Extrapolation of the 100 keV flux to 

800 keV gives  Fcont = 8.5 x 10-6 photons cm-2 s-1 keV-1. 

At 800 keV, PICsIT has the higher sensitivity. From Figure 14,  and , we find: 

  

Scont (ISGRI) = 1.3 ´ 10-5  ph cm-2s-1 keV-1 

  

Scont (PICsIT) = 1.5 ´ 10-6  ph cm-2s-1 keV-1 

Since the sensitivity compared to source flux is lower at 800 keV than at 100 keV, we use a 

larger energy bin of ∆E/E = 0.15. For the same 50 ks observation time we find: 

  

SNRcont (ISGRI) = 0.8   and   SNRcont (PICsIT) =  6.6 

For this observation performed with a 5×5 dither, OTE gives 0.8σ and 6.4σ respectively. The 

source would, therefore, be detected by PICsIT but not by ISGRI. OTE also shows that to detect 

the source to 10σ, PICsIT needs an exposure time of ∼123 ks, whereas ISGRI would require 

about 8.6 Ms. 

 
5.2.3 Example 3: hard X-ray transient in broad band spectrum 

Consider a transient with the same characteristics as the one seen in the previous examples, but 

for which only the broadband 50–150keV flux is known to be Fcont = 7.6 x 10-5 photons cm-2 s-1 

keV-1. For a 50 ks observation, taking a power-law spectrum with Γ = -1. 

In this case, OTE splits the 50-150 keV band into three narrower bands: 50–83 keV, 83–138 

keV and 138–150 keV. Table 8 shows the OTE flux, ISGRI sensitivity, and SNR calculated 

using both Equation 4 (in column 4) and OTE for a 5 × 5 dither (in column 5). Combining in 

quadrature the SNR values in column 4 to get the 50–150 keV detection significance, we find 

SNRcont = 70, compared to SNRcont = 61 using the OTE values in column 5, and to SNRcont = 80 

if we use the equation in §5.1 (p. 28). 

  

SNRcont = 3 ´ 7.6 ´ 10-5 2.85 ´ 10-6( ) ´ 2 ´ 100 /100( )
-1/ 2

´ 5 ´ 104 105( )
1/ 2

= 80 
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Table 8. OTE example calculation of detection significance in a broad band 

Energy band 

(keV) 

Flux 

(ph cm-2 s-1 keV-1) 

Sensitivity  (ph 

cm-2 s-1 keV-1) 

SNR SNR 

(OTE; 55 dither) 

50-83 1.06 x 10-4 5.0 x 10-6 45 40 

83-138 0.64 x 10-4 2.6 x 10-6 52 44 

138-150 0.48 x 10-4 3.0 x 10-6 14 13 

 
5.2.4 Example 4: 22Na line at 1.275 MeV 

We are searching for the 22Na line at 1.275 MeV (half life of 3.5 yr) in a bursting transient 

source. The model-predicted line flux after outburst is: Fline = 10-3 ph cm-2 s-1. The PICsIT line 

sensitivity given in Figure 14 and  is: Sline = 4.810-4 ph cm-2 s-1. 

For a 500 ks observation, the equation in §5.1 (p. 28) predicts a detection significance of: 

  

SNRcont = 3 ´ 10-3 4.8 ´ 10-4( ) ´ 5 ´ 105 106( )
1/ 2

= 4.4 

Similarly, OTE predicts an SNRline = 4.1 for such an observation using the 5×5 dither. 

Moreover, OTE indicates that increasing the detection significance to a value of 10 would 

require an exposure time of ∼3 Ms. 


