
INTEGRAL 
Announcement of Opportunity 
for Observing Proposals (AO-2)

IBIS Observer’s Manual

Written by: P. Barr & E. Kuulkers

Integral Science Operations, ESTEC

Based upon inputs from:
P. Ubertini, IBIS Co-P.I.,  IAS-CNR, Rome

F. Lebrun, IBIS Co-P.I., CEA, Saclay
A. Bazzano, IAS-CNR, Rome
L. Natalucci, IAS-CNR, Rome

J. Lockley, University of Southampton

 15 July  2003

Issue 2

Ref. nr. INT-SOC-DOC-021



                                                                        This page was intentionally left blank

ii



iii

  Table of Contents

I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
II. Description of the instrument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1. Overall design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2. Imaging System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 The Collimator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 The Mask  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3. Detector assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Upper detector layer: ISGRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Lower detector layer: PICsIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4. Veto shield  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5. Electronics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1 Analog Front End Electronics (AFEE) . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Module Control Electronics and PICsIT Electronic Box . . . . . . . . . . 12
5.3 On-Board Calibration Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4 Digital Front End Electronics (DFEE) and ‘FIFO’. . . . . . . . . . . . . . . 13
5.5 Data Processing Electronics and Hardware Event Processor . . . . . . . 13

III. How the instrument works  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1. Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2. Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Direct detection in ISGRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Direct detection in PICsIT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Multiple events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3. Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4. Polarimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16           

IV. Overview of observing modes and parameters. . . . . . . . . . . . . . . . . . . . . 17
V. Performance of the instrument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1. Components and sources of instrumental background . . . . . . . . . . . . 18
2. Instrumental characterisation and calibration . . . . . . . . . . . . . . . . . . . 19
3. Measured performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Imaging resolution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Spectral resolution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Timing capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

VI. Observation ‘‘Cook book’’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1. Astronomical considerations on the use of the instrument . . . . . . . . . 24
2. IBIS sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1 How to calculate observing times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Hints and warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3. Worked-out examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



This page was intentionally left blank

iv



                                            IBIS Observer’s Manual
I.    Introduction

IBIS (Imager on Board the INTEGRAL Satellite) is one of the two prime instruments of the 
INTEGRAL scientific payload.

IBIS is a gamma-ray telescope which is able to observe celestial objects of all classes ranging 
from the most compact galactic systems to extra-galactic objects, with powerful diagnostic capa-
bilities of fine imaging, source identification and spectral sensitivity in both continuum and lines. 
It covers the entire energy range from about 15 keV to several MeV, and it can localise weak 
sources at low energies to better than a few arcminutes accuracy.

 Table 1 gives an overview of the scientific capabilities of IBIS. Note that the line sensitivity 
values are those as determined pre-launch.

* Note that the continuum sensitivities given are statistical limits only, based on the in-flight 
measured background.

Table 1: 

Operating energy range 15 keV - 10 MeV

Continuum sensitivity,

in photons cm-2 s-1 keV-1

(3σ detection, ∆E=E/2, 105 s 
integration) *

2 x 10-6 @ 100 keV

1.5 x 10-6 @ 1 MeV

Line sensitivity,

in photons cm-2 s-1

(3σ detection, 106 s 
integration)

1.9 x 10-5 @ 100 keV

3.8 x 10-4 @ 1MeV

Energy resolution (FWHM) 8% @ 100 keV
10% @ 1 MeV

Angular resolution (FWHM) 12’

Point source location accu-
racy (90% error radius)

30” @ 100 keV
1’ @ 1 MeV

Absolute timing accuracy 
(3σ)

62 µs - 30 min

Field of view 9o x 9o (fully coded)

29o x 29o (zero response)
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Imaging is performed using coded mask technology. There are two detectors operating simul-
taneously; the Integral Soft Gamma-Ray Imager, ISGRI, a semi-conductor array optimised at 
lower energies, and the PIxellated Ceasium Iodide (CsI) Telescope, PICsIT, a crystal scintillator, 
for higher energies. The energy ranges covered by ISGRI and PICsIT overlap considerably; 
ISGRI covers the range 15 keV - 1 MeV; PICsIT covers 175 keV - 10 MeV. ISGRI is more effi-
cient below about 200 keV (factor ~3); PICsIT is more efficient at higher energies (e.g. a factor ~3 
at 511 keV), but the different background levels in the two detectors must also be factored into 
sensitivity calculations (as discussed in section VI.2).

Sections II.1, V.3 and Chapter VI of this document give the prospective observer a top-level 
description about the overall design and scientific capabilities of IBIS, to assist in the writing of 
observing proposals; we recommend these to be studied first.

The rest of Chapter II contains a more detailed engineering description of the instrument. 
Chapter III gives information about how IBIS actually works, while Chapter IV describes the sci-
entific mode of the instrument. Finally, parts 1 and 2 of Chapter V describe the in-orbit behaviour 
of IBIS and how it is calibrated.
6 of 32
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II.    Description of the instrument

1.   Overall design

IBIS is a gamma-ray imager operating in the energy range 15 keV to 10 MeV, with two simulta-
neously operating detectors covering the full energy range, located behind a Tungsten mask which 
provides the encoding.

The coded mask is optimised for high angular resolution. As diffraction is negligible at gamma-
ray wavelengths, the angular resolution of a coded-mask telescope is limited by the spatial resolu-
tion of the detector array. The angular resolution of a coded mask telescope is defined by the ratio 
between the mask element size and the mask-to-detection plane distance (in this case 3.2 m). The 
IBIS detectors are made of a large number of small, fully independent pixels.

The detector features two layers, ISGRI and PICsIT: the first is made of Cadmium-Telluride 
(CdTe) solid-state detectors and the second of Caesium-Iodide (CsI) scintillator crystals. This con-
figuration ensures a good broad line and continuum sensitivity over the wide spectral range covered 
by IBIS. The double-layer discrete-element design of IBIS allows the paths of interacting photons 
to be tracked in 3D if the event involves detection units of both ISGRI and PICsIT. The application 
of Compton reconstruction algorithms to these types of events (between a few hundred keV and a 
few MeV) allows an increase in signal to noise ratio attainable by rejecting those events unlikely to 
correspond to source photons outside the field of view. 

The detector aperture is restricted, in the hard X-ray part of the spectrum, by passive shielding 
covering the distance between mask and detector plane. An active BGO scintillator VETO system 
shields the detector bottom as well as the four sides up to the bottom of ISGRI.

Figure 1 shows a cut-away drawing of the various components of IBIS (except the mask and 
tube).
7 of 32
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Figure 1. Cutaway drawing of the IBIS detector assembly, together with the lower part 
of the collimator (‘‘Hopper’’). The coded mask (not shown) is located 3.2 m above the ISGRI 
detector plane.

2.   Imaging System

2.1   The Collimator

In order to maintain the low-energy response of IBIS despite the dithering needed for SPI (see 
the Integral Manual), the collimation baseline consists of a passive lateral shield that limits the 
solid angle (and therefore the cosmic gamma-ray background) viewed directly by IBIS detector in 
the full field of view up to a few hundreds of a keV.
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The tube collimation system is implemented with three different devices:

The Hopper: Four inclined walls starting from the detector unit with a direct interface to the 
IBIS detector mechanical structure. The inclination of the hopper walls should ideally join the 
mask size, but the true inclination takes into account the presence of the Calibration System and 
the mechanical constraints. The hopper walls reach 550 mm out from the ISGRI top plane (850 
mm from the PLM base), while the actual height is 530 mm. The shielding effect is obtained with 
Tungsten foils embedded in the four hopper walls. The hopper walls thickness is 1 mm. The hop-
per is not physically connected to the payload module structure.

The Tube: The Tube is formed by four payload module walls shielded with glued Lead foils. 
Two of the tube walls (-/+Z axis) are inclined (by 3.472 degrees to the vertical) in order to follow 
as closely as possible the inclined ideal tube shape, whilst the Y-axis walls are vertical, as shown 
in Figure 1. In particular the actual inclination of the Z walls is defined by the interface require-
ments with the hopper: the Z Tube walls stop at 20 mm in the horizontal plane from each upper 
edge of the hopper walls (i.e. at 850 mm from the Payload Module, PLM, base).

The additional side shielding on the mask: Four strips of 1 mm thick Tungsten provide shield-
ing from the diffuse background in the gaps between the mask edges and the top of the tube walls.

2.2   The Mask

The IBIS Mask Assembly is rectangular with external dimensions of 1180 x 1142 x 114 mm3, 
and consists of three main subsystems: the Coded Pattern, the Support Panel and the Peripheral 
Frame with the necessary interface provisions.

The Coded Pattern is square, of size 1064 x 1064 x 16 mm3, made up of 95 x 95 individual 
square cells of size 11.2 x 11.2 mm2. 

The cells form a modified uniformly redundant array (MURA) coded pattern of 53 x 53 ele-
ments. Approximately half of the cells are opaque to photons in the operational energy range of 
the IBIS instrument, offering a 70% opacity at 1.5 MeV. The other half of the cells are open, i.e. 
with an off-axis transparency of 60% at 20 keV. Figure 2 shows the mask pattern.

The Support Panel includes those additional elements to support the code pixels, providing the 
necessary stiffness and strength to overcome the launch environment and the in-orbit operational 
temperatures. The Peripheral Frame reinforces the sandwich panel. 

The mechanical interfaces with the INTEGRAL PLM also provide extra Tungsten shielding 
to the diffuse background through the gaps between the mask edges and the payload vertical 
walls.
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Figure 2. The IBIS coded mask pattern.

3.   Detector assembly

The ISGRI and PICsIT detectors are layered with respect to each other, with PICsIT ‘under’ 
ISGRI with respect to the coded mask (and hence the astronomical source).

3.1   Upper detector layer: ISGRI

Cadmium Telluride (CdTe) is a II-VI semi-conductor operating at an ambient temperature; 
0o +/- 20o C is the optimum range. With their small area, the CdTe detectors are ideally suited to 
10 of 32
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build a pixellated imager with good spatial resolution. On the other hand, their small thickness 
(necessary to achieve good energy resolution) restricts their use to the low energy domain (50% 
efficiency at 150 keV). Providing spectral performances intermediate between that attained by the 
cooled germanium spectrometers and those of the scintillators, the CdTe can be used well in the 
low energy domain (down to ~15 keV).

The CdTe layer is made of 8 identical Modular Detection Units (MDUs) each having 2048 
pixels which are read out by 512 Application Specific Integrated Circuits (ASICs) (4 channels per 
ASIC). Each MDU is connected independently to a Detector Bias Box (DBB) and to a Module 
Control Electronics (MCE) system which ensures the A/D conversion and provides other on-
board processing such as event filtering and active pixel monitoring.

The specifications are:

- Pixel (CdTe crystal) dimension: 4 x 4 mm2, 2 mm thick
- Spacing between pixels: 600 µm (4.6 mm centre-to-centre)
- Minimum assembly: polycell of 16 pixels (4 x 4)
- MDU: 128 polycells (16 x 8)
- Layer: 8 MDUs (128 x 128 detection units)
- Total sensitive area: 2621 cm2 (128 x 128 x 16 mm2).

The CdTe layer is located at 294 mm above the PLM base plane and its overall thickness is 
about 15mm.

3.2   Lower detector layer: PICsIT

Caesium Iodide (CsI) is a I-VII scintillation crystal. The main characteristics of the layer are:

- Pixel (CsI(Tl)) crystal dimension: 8.55 x 8.55 mm2, 30 mm thick
- Spacing between pixels: 550 µm (9.2 mm centre-to-centre)
- Minimum assembly (ASIC): 16 detection units
- Module: 512 detection units (32 x 16)
- Layer: 8 Modules (8 x 512)
-Total sensitive area: 2994 cm2 (pixel area x 4096).

The CsI(Tl) bars are optically bonded to custom-made low-leakage silicon PIN photodiodes. 
The design provides a high degree of modularity. The CsI(Tl) layer is divided in 8 rectangular 
modules of 512 detector elements, each module being integrated into a stand-alone testable sub-
system. The CsI modules have the same cross-sectional shape as those of the CdTe.
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4.   Veto shield

The Veto shield is crucial to the operation of IBIS. IBIS uses anti-concidence logic to accept 
or reject detected events as real photons in the field of view, or background particles or photons 
propagating through, or induced in, the spacecraft.

The sides, up to the ISGRI bottom level, and rear of the stack of detector planes are sur-
rounded by an active Bismuth Germanate (BGO) veto shield. Like the detector array, the Veto 
shield is modular in construction.

There are 8 lateral shields, i.e. 2 modules per side, and 8 bottom modules. 

Each Veto Detector Module (VDM) includes:

- the BGO crystal and related housing
- two photomultiplier tubes (PMTs) optically coupled to the BGO and assembled with the 

dedicated Front End Amplifiers and high voltage (HV) divider
- one HV Power Supply 
- one Veto Module Electronics box for Module control
- internal harness.

The high density and mean Z of the BGO ensures that a thickness of 20 mm is sufficient to 
reduce the detector background, due to leakage through the shielding of cosmic diffuse gamma−
ray background and gamma−rays produced in the spacecraft, to less than the sum of all other 
background components.

5.   Electronics

5.1   Analog Front End Electronics (AFEE)

Charge collection, signal filtering, and amplification are all performed by the Application Spe-
cific Integrated Circuits (ASICs) on both ISGRI and PICsIT. In ISGRI, the 16384 individual 
detectors (pixels) are grouped into ‘polycells’. A polycell is a hybrid circuit which receives a sig-
nal from 16 detectors via 4 ASICs, and is the basic assembly unit of a detector module.

5.2   Module Control Electronics (MCE) and PICsIT Electronic Box (PEB)

The MCE and PEB perform receipt, checking and execution of telecommands for ISGRI and 
PICsIT, respectively. They also collect and format the housekeeping data and process the ana-
logue and digital data (energy and rise time). An important function of the MCE is to monitor the 
CdTe noise levels. In-flight a CdTe detector can become noisy and trigger the relevant MCE too 
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frequently, causing a large dead time with unacceptable loss of photons. Therefore the MCE mon-
itors, in real time, the relative counting rates of each CdTe polycell. If a polycell exhibits noise, 
the MCE will, if necessary, switch it off. It can be subsequently reactivated and checked from the 
ground.

5.3   On-Board Calibration Unit

IBIS contains an on-board collimated radioactive 22Na source. This allows regular calibration 
of PICsIT at both the 511 keV line and 1275 keV (calibration to better than about 1% in 1-2 
orbits). ISGRI can also use the 511 keV line, albeit at lower efficiency.

5.4   Digital Front End Electronics (DFEE) and ‘FIFO’

The DFEE sits behind the AFEE and processes the ASICs output for the ‘first-in, first-out’ 
(FIFO) data manager. FIFO sorts the events from different modules according to their true arrival 
time in the detector plane for transmission to the DPE/HEPI (see below). The DFEE also monitors 
the FIFO and instructs it when to send data to the DPE.

5.5   Data Processing Electronics (DPE) and Hardware Event Processor (HEPI)

The detector electronics chain ends at the DPE and the HEPI. The HEPI performs the data his-
togramming and generates the data structures for the DPE. The DPE handles all the interfaces 
between the instruments and the spacecraft for both uplink and downlink, for example, packetting 
the data for the On-Board Data-Handling System for transmission to ground.
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III.    How the instrument works

Photons are detected by three methods:

(i) Direct detection in ISGRI.

A photon is stopped in a single pixel of the semi-conductor, generating an electric pulse. 

(ii) Direct detection in PICsIT. 

A photon passes through ISGRI and is stopped in PICsIT, generating one or more scintillation 
flashes. PICsIT single and multiple (see below) are distinguished accordingly.

(iii) Multiple events.

 Photons arriving in either ISGRI or PICsIT produce secondary photons via Compton scatter-
ing, subsequently detected in either detector layer. Multiple events in ISGRI are rejected. In Fig-
ure 3 we show the efficiencies of the various detection techniques.

 

 Figure 3. IBIS efficiencies for the various detection techniques, as evaluated pre-launch. 
‘‘ISGRI-PICsIT’’ refers to the Compton events.
14 of 32



                                            IBIS Observer’s Manual
1.   Imaging

 
Both ISGRI and PICsIT record the (x,y) coordinates of each event registered in the corre-

sponding layer, to build up an image. The anti-concidence VETO is used to reject background 
events.

The coded mask produces a shadowgram. Photons from the source and the background are 
distributed across the entire field of view, but cross-correlation techniques allow the full image to 
be reconstructed for the fully coded field of view (FCFOV: 9o x 9o) at each pointing. For the par-
tially coded field of view (PCFOV: out to 29o x 29o) special cleaning techniques must be applied 
to the data to properly reconstruct the image.

The actual sky coverage in an observation depends on the dither pattern. For example, during 
a 5 x 5 dither pattern a 37o x 37o field is imaged out to zero response, while a 17o x 17o region is 
sampled (at least partly) with full coding.

2.   Spectroscopy

2.1   Direct detection in ISGRI

In principle, the amplitude of the pulse yields the energy of the incident photon. However, 
above 50 keV the energy determined  is not just a function of the pulse height but also the pulse 
rise time, so both are used to determine the energy of the incident photon. In addition, the result-
ing line profile (energy resolution) is no longer Gaussian, but more similar to a Lorentzian. The 
energy resolution depends on the operating temperature, and also on the bias voltage; the bias 
voltage has to be optimised as a trade-off between high resolution but more noise (high voltage) 
or lower noise but lower resolution (low voltage).

2.2   Direct detection in PICsIT

The energy of the incident photon is derived, in each crystal bar, from the intensity of the flash 
recorded in the photodiode. The energy resolution of PICsIT is a function of the signal-to-noise of 
the events, the electronic noise at low energies, and the light output.

2.3   Multiple events

For true Compton events (i.e. real gamma-ray photons) the energy is determined from the sum 
of energies recorded for the initial event and in the detection of the scattered photon.
15 of 32



                                            IBIS Observer’s Manual
 The Compton event rate has been modeled but the predictions are uncertain. We recommend 
that when using the observing time estimator, only the direct ISGRI and PICsIT calculations are 
used for the basis of an observing proposal. Any increase in sensitivity available from Compton 
events should be regarded as a bonus.

3.   Timing

The ISGRI time resolution is 62 µs for each detected event. PICsIT spectra and images are 
accumulated every 1800-3600 seconds depending on the (flexible) dithering time; a spectrum 
alone (but with low resolution - from two to eight energy channels) is available every several mil-
liseconds. See also Chapter IV.

4.   Polarimetry

In principle, the multiple events in adjacent PICsIT cells can be used to determine the polari-
sation of the incident photons, because of the Klein-Nishina cross-section with polariation angle. 
However, at present polarisation is not feasible, and it is, therefore, not offered in this AO.
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IV.    Overview of observing modes and parameters

IBIS has several observing modes, for engineering and calibration purposes. However, for sci-
entific use there is only one operating mode, i.e. Science Mode. The Science Mode has no user-
selectable parameters.

In Science Mode, ISGRI registers and transmits events on a photon-by-photon basis, i.e. every 
event is tagged with its (x,y) position on the detector plane, event energy (from the pulse height 
and rise time) and event time.

PICsIT, in principle, can also operate in photon-by-photon mode. However, given the higher 
background compared to ISGRI, with the available telemetry there would be unacceptable data 
losses. Therefore, the standard mode for PICsIT is ‘histogram’. Images and spectra (full spatial 
resolution, 256 energy channels) are accumulated for 1800-3600 seconds (depending on the flexi-
ble dithering time) before transmission to ground. There is no time-tagging internal to the histo-
gram, i.e. spectral imaging has a time resolution of 1800-3600 seconds only. 

Additionally, coarse spectra without imaging information are accumulated by PICsIT and 
transmitted with far higher time resolution. However, without imaging information their useful-
ness is limited to observations of very strong sources where the source count rate dominates the 
background. The time resolution and the number of energy channels for this spectral timing data 
can be commanded from the ground. The time resolution can take values between 500 ms to 
0.976 ms; the current default is 1.95 ms and 4 energy channels.
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V.    Performance of the instrument

1.   Components and sources of instrumental background

For most astronomical sources, the background will be higher than the measured source inten-
sity.

The principal sources of background in IBIS are:

 - for ISGRI at lower energies (down to about 100 keV), the diffuse cosmic gamma-ray back-
ground;

 - for ISGRI at higher energies, and for PICsIT, the energetic particle background induced by 
cosmic ray hadrons interacting with the solid body of INTEGRAL - radioactive decay. 

Other effects which influence the background are e.g. solar activity and VETO performance. 
The particle background varies over the solar cycle. It is lowest at solar maximum, when the 
higher solar magnetic field inhibits the propagation of cosmic rays into the inner solar system. It is 
a factor of ~2 higher at solar minimum.

The (background) detector images are strongly structured (apart from bad or dead pixels). 
They are currently being evaluated in order to be taken into account in the background subtraction 
algorithms.

Already since the first instrument activation frequent bursts of counts in the PICsIT count rate 
have been observed. In the accumulated detector images they are seen as tracks of bright pixels; 
they indicate that these events are related to the interaction of cosmic rays with the detector. The 
contribution of these cosmic rays induced triggers to the total PICsIT background is of the order 
of 10%. However, these triggers are mainly effective at low energy channels (up to about 30% of 
the total background).

The observed background rates compared to the Crab on-axis count rates are given in Table 2. 
The background rates quoted here are determined in-flight using calibration observations.

 

Table 2:  Background rates compared to the Crab rates

Instrument
Background
(Solar Max)

cts s-1

Crab on-axis

cts s-1

ISGRI 600 220

Compton 135 n/a

PICsIT 3650 6.7
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IBIS is located next to the SPI and JEM-X instruments that have similar configurations. Since 
gamma-rays are highly penetrating, it is possible for them to pass through parts of the spacecraft 
or instrument structures, as well as coded masks and to be detected by the gamma-ray instru-
ments. Therefore, off-axis gamma-rays (effectively those with energies above ~300 keV) that pass 
through the SPI coded mask may cast a shadow of this mask onto the IBIS detectors. This combi-
nation is often referred to as the ‘‘SPIBIS’’ instrument. Although it effectively increases the field 
of view of IBIS, a bright gamma-ray source would thus add additional counts and modulation to 
the IBIS histogram, which considerably complicates the image reconstruction.

The SPIBIS effect has been calibrated before launch. Currently, the ISOC avoids scheduling 
sources when either of the three brightest sources/regions, i.e. Crab, Cyg X-1 or the Galactic 
Center region, are visible by IBIS through the SPI mask. This ensures that the observation is 
uncontaminated by a possible SPIBIS effect.

2.   Instrumental characterisation and calibration

The ISGRI and PICsIT detectors were calibrated in-orbit during the INTEGRAL commission-
ing phase. At present the calibration is good up to the 10% level up to ~300 keV. During routine 
operations observations of the Crab nebula and/or Cyg X-1 are, and will be, performed, to enable 
regular verification of the detector uniformity and its energy response, as well as enhancing the 
calibration. 

At high energies (typically > 1 MeV), the background so strongly dominates the flux of any 
calibration source that a large amount of data is needed. It was not possible to take sufficient 
measurements in the few weeks available for commissioning phase. Therefore, data accumulated 
through the routine operations phase are used to extend the calibration to ~10 MeV. 

The instrument characteristics will also be checked after strong disturbing events such as solar 
flares. The energy response and spectral resolution is monitored on long time-scales using the de-
excitation lines at 511 keV and 1275 keV emitted by the on-Board 22Na calibration source, and at 
59.3 keV using the background-induced Tungsten fluorescence line from the coded mask and 
hopper walls.

3.   Measured performance

3.1   Imaging resolution

In the FCFOV the off-axis response (sensitivity, spatial resolution) is fairly uniform, at least 
above ~30 keV (at the lowest energies the off-axis transparency of the mask falls off quickly). 
However if a 5 x 5 dither pattern is used there is a slight (~2%) loss in overall sensitivity averaged 
over the dither pattern.
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Figure 4. The point-source location accuracy (PSLA; 90% confidence level accuracy) for 
ISGRI  using in-flight calibration observations of Cyg X-1 and Cyg X-3. The expected curve 
(continuous line) is also shown. 

The angular resolution of IBIS is 12’ FWHM. However a feature of the mask is that the cen-
troiding accuracy for a point source can be far finer. Figure 4 shows the measured point source 
location accuracy (PSLA) in ISGRI as a function of signal-to-noise ratio from observations 
(points) and theory (line). The absolute localisation (after misalignment correction) is better than 
1-1.5’ for bright sources. The PICsIT PSLA is a factor ~2 coarser than that of ISGRI.

3.2   Spectral resolution

The spectral resolution of IBIS has been measured during tests on the engineering model, as 
well as in-flight. Figure 5 shows the ISGRI spectral performance, both measured pre-launch and 
theoretical. The measurements deviate from the model at higher energies because no rise-time 
correction was applied. The evaluation of the ISGRI in-flight spectral performance is still in 
progress.

Figure 6 shows the PICsIT spectral resolution, as determined in-flight. The expected, theoreti-
cal, values are determined from measurements which were taken from the engineering model 
tests. The in-flight data do not show any degradation or changes in the PICsIT spectral perform-
ance so far.
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Figure 5. The energy resolution of ISGRI as determined before launch. Solid line; theo-
retically expected values; points (stars): values measured on the engineering model. There is 
no evidence that the energy resolution has degarded or changed in-flight. Note that above 
about 200 keV, PICsIT is more sensitive than ISGRI, and the PICsIT energy resolution 
shown in Figure 6 is more relevant.

Figure 6. PICsIT energy resolution as measured in-flight using Calibration Unit (S5) 
data. Also shown are the theoretical expectations as determined from pre-flight tests using 
an engineering model (EM). The electronic noise values (‘‘Noise’’) refer to one ASIC only; a 
10% increase is expected when extrapolating to the complete detector electronic chain.
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3.3   Sensitivity

The full calculations for continuum and line sensitivities are in principle given by the follow-
ing equations:

V-3.3.1  Continuum:

 Sc= nσ [TA∆E εTε I (ϑo-ϑc)
2]-1{nσ(ϑo+ϑc)

2 +[nσ 2(ϑo-ϑc)
 2+4(ϑo−ϑc)

2 T∆E AB] 0.5}

V-3.3.2  (Narrow) line:

 Sl = nσ [TΑεpε I (ϑo-ϑc)
2]-1-{nσ(ϑo+ϑc)

2 + [nσ
2(ϑo-ϑc) 

2 +4(ϑo-ϑc)
2 TδE AB]  0.5},

where

Sc is the continuum sensitivity in photons cm-2 sec-1 keV-1,
Sl is the line sensitivity in photons cm-2 sec-1,
nσ is the number of sigma,
∆E is the energy bin (for continuum),
δE is the energy resolution,
A is the detector area,
εp, εT are the peak and total efficiencies,
ε I is the imaging efficiency, a function of the coding noise and dither pattern,
B is the background countrate in counts cm-2 sec-1 keV-1,
ϑo, ϑc are the open and closed mask element transparencies, and
T is the observation duration.
 
Note that for a broad line with a FWHM of ∆E keV, the sensitivity is reduced by (∆Ε/δE)1/2.

In Chapter VI we show the sensitivity curves in Figures 8 and 9, thus calculated, for ISGRI 
and PICsIT separately, and how they may be used to estimate signal-to-noise ratios and observing 
times. However, we stronly recommend the final proposed times always to be calculated using the 
on-line observing time estimator (OTE); those are the only values which will be used in the tech-
nical feasibility check of the proposal performed for the Time Allocation Committee (TAC) by the 
ISOC.

PLEASE NOTE: the continuum sensitivities given in Chapter VI are for monochromatic 
flux density (photons cm-2 s-1 keV -1), while the input for the observing time estimator (OTE) is in
broad-band flux (photons cm-2 s-1) within a user-defined energy range.
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3.4   Timing capabilities

The time resolution in ISGRI is 62 µs. For PICsIT, imaging and spectral histograms are col-
lected every 1800-3600 seconds (depending on the flexible dithering time) - there is no finer time 
resolution available inside the histogram. The spectral timing data of PICsIT (no imaging!) will 
be accumulated every few ms; the resolution can be selected from ground and can take a value 
between 0.976 and 500 ms. The value used in routine operations is currently 62 µs. Once selected, 
it will apply to all PICsIT observations.

The absolute timing accuracy, i.e. the barycentric correction to event times measured in IBIS, 
depends on not just the time resolution, but also on time frame synchronisation in the instrument 
and spacecraft subsystems, and the uncertainty in the spacecraft position around the orbit. Current 
calculations indicate a 1σ uncertainty of 61 µs and 3σ uncertainty of 92 µs. This will be evaluated 
in-flight via dedicated pulsar observations.
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VI.    Observation ‘‘Cook book’’

1.   Astronomical considerations on the use of the instrument

In this section we present some typical examples of the kinds of scientific studies suitable for 
IBIS. The selection is by no means exhaustive.

Black Holes 

 IBIS can detect all currently known persistent black-hole (BH) candidates in our galaxy.

IBIS will be used to investigate whether BH binary systems are characterised by distinctive 
X/gamma−ray signatures. For example, are their spectra significantly harder than those from neu-
tron star systems - is the bulk of their luminosity indeed in the soft gamma−ray band? Can the 
spectral turnover be measured and the total luminosity constrained? 

QPOs have also been measured in BH systems - e.g. Cyg X-1 - and could provide further 
important diagnostic of the structure of the inner edge of the accretion disk, and possibly also the 
BH mass itself.

IBIS will also be able to detect any Galactic hard X/gamma−ray transient in outburst within 
the few minutes exposures provided by the routine Galactic Plane Survey (GPS) or the Galactic 
Centre Deep Exposure (GCDE). Subsequent follow-up longer observations can monitor the light 
curve of the transient, its spectral evolution, and possible transient lines with unprecedented spec-
troscopic quality. 

Of particular interest in such transients is the appearance of broad transient lines. For exam-
ple, Nova Muscae 1991 (GS 1124-68) showed a broad line at 480 keV - redshifted annihilation? - 
and another spectral feature near 200 keV, possibly due to Compton backscattering. IBIS will 
measure such features with good statistical accuracy on timescales of minutes rather than hours, 
allowing the study of the rapidly changing geometry and physical conditions in the immediate 
vicinity of black hole systems.

Neutron Stars 

Neutron stars (NS) - both in binary systems and isolated NS (e.g. pulsars) - will be objects of 
prime interest for IBIS.

 For example, observations of the Galactic Centre region with SIGMA, BeppoSAX and RXTE 
indicate that X-ray bursters are a newly identified class of soft gamma-ray sources.

In addition, the good spectral resolution and large collecting area at low energy will enable the 
study of cyclotron lines from magnetized NS in great detail, e.g phase-resolved line shapes/
widths. 
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The good sensitivity at higher energy will allow detection of isolated pulsars in the MeV 
region, where their properties are so far poorly measured.

 It is worth noting in general that the soft gamma-ray domain is probably the best region to 
“see” the accretion at work close to the compact object.

 Supernovae 

In most cases, the line sensitivity of IBIS is independent of the intrinsic line width and IBIS 
provides a powerful imaging complement to SPI - studying the spatial distribution of hot spot line 
emission from supernova remnants and in the galactic plane in general, while SPI provides fine 
spectroscopy. Also, hidden young SNR will show up as emission-line point sources.

 Extragalactic studies

 A main result of CGRO and BeppoSAX observations of AGN is that their broad-band con-
tinua strongly depends on their AGN type. Figure 7 provides an estimate of the number of AGN 
detectable by IBIS assuming two standard observation times; 105 s for detection up to 100 keV, 
and 106 s for detection up to the MeV region.

 At low energies these will be mostly Seyferts. Although it is known that their spectra fall off 
somewhere above ~50 keV (but below ~1 MeV), the details of this cut-off are still highly uncer-
tain, mainly due to difficulties in fitting complex models over a limited (due to the lack of sensi-
tive high-energy observations) energy band. Based on the existing 2-10 keV log N/log S 
distribution IBIS should be able to detect about 200 Seyferts across the whole sky in a typical 1 
day exposure to 100 keV, and about 20 objects out to 1 MeV (depending on where the turnover is) 
thus allowing spectral studies to be performed on a quite large sample of sources. In comparison, 
the first X-ray surveys in the 1970’s (Uhuru, Ariel V) found ~50 AGN over the whole sky. 
Another intriguing issue which IBIS will address is whether there is a large population of Comp-
ton-thick AGN visible above 30 keV.

At higher energies most of the sources will likely be blazars, whether MeV peaked or TeV 
peaked. The main interest with INTEGRAL is the determination of the spectral characteristics 
from keV to MeV energies (spectral breaks? hard tails?). To this end observations would probably 
be longer (up to 10 6 s depending on the source). However, it is worth noting that longer exposures 
would as a by-product find a number of serendipitous sources (typically ~4 sources per field of 
view?)! 
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Figure 7. Number of AGN visible to IBIS in soft and hard gamma-rays, assuming the 
2-10 keV log N/log S measured from all-sky surveys.

2.   IBIS sensitivity

 Figures 8 and 9 show, respectively, the continuum (Sc) and line sensitivities (Sl), for ISGRI and 
PICsIT separately, as calculated from the prescriptions in Section V.3.3. The curves are for a detection 
of 3σ significance with an observing time of 105 s and 106 s, for the continuum and line sensistivities, 
respectively. The continuum sensitivity is given for ∆E=E/2. The line sensitivity is for a narrow (unre-
solved) line, and are pre-launch estimates; they are currently being re-evauluated. We also give the 
(some of the) actual values in Tables 3, 4, and 5.

2.1   How to calculate observing times

The approximate signal-to-noise ratio for a given exposure can be calculated from the sensitivity 
curves. As shown in equations V-3.3.1 and V-3.3.2, 

the continuum sensitivity scales as 

∆E-1/2, t-1/2 and nσ, 

the line sensitivity as 

t-1/2 and nσ.
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Table 3: ISGRI continuum sensitivities (105 s exposure, 3σ detection, ∆E=E/2)

Energy 
(keV)

ph cm-2 s-1 
keV-1

Energy 
(keV)

ph cm-2 s-1 
keV-1

Energy 
(keV)

ph cm-2 s-1 
keV-1

15 12.7 x 10-6 60 4.34 x 10-6 300 2.71 x 10-6

20 11.3 x 10-6 70 3.07 x 10-6 350 2.76 x 10-6

25 8.69 x 10-6 80 2.43 x 10-6 400 2.79 x 10-6

30 5.64 x 10-6 90 2.12 x 10-6 450 2.65 x 10-6

35 4.60 x 10-6 100 1.93 x 10-6 500 2.78 x 10-6

40 3.97 x 10-6 150 2.24 x 10-6 600 2.39 x 10-6

45 3.67 x 10-6 200 2.52 x 10-6 700 2.26 x 10-6

50 3.53 x 10-6 250 2.66 x 10-6 800 2.17 x 10-6

Table 4: PICsIT continuum sensitivities (105 s exposure, 3σ detection, ∆E=E/2)

Start 
energy 
(keV)

End 
energy 
(keV)

ph cm-2 s-1 
keV-1

Start 
energy 
(keV)

End 
energy 
(keV)

ph cm-2 s-1 
keV-1

170 220 7.99 x 10-6 1200 1400 1.88 x 10-6

220 280 6.06 x 10-6 1400 1800 1.28 x 10-6

280 370 3.62 x 10-6 1800 2200 1.05 x 10-6

370 430 3.41 x 10-6 2200 2900 0.59 x 10-6

430 580 1.90 x 10-6 2900 3500 0.68 x 10-6

580 720 1.91 x 10-6 3500 4500 0.50 x 10-6

720 900 1.48 x 10-6 4500 5700 0.32 x 10-6

900 1200 1.57 x 10-6
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So the signal-to-noise ratio achieved for a different time, t(sec), ∆E/E and continuum or line 
flux Nc, Nl (photons cm-2 s-1 keV-1 and photons cm-2 s-1 respectively), would be:

nσ = 3(Nc/Sc)(2∆E/E)1/2 (t/105)1/2         in the continuum and                                    VI-2.1

nσ = 3(Nl/Sl) (t/106)1/2                                for a narrow (unresolved) line.                      VI-2.2

If the line is broad, with a FWHM of ∆E, then the signal-to-noise ratio is reduced by 
(∆E/δΕ)1/2, where δE is the instrumental FWHM at that energy (see Figures 5 and 6).

Note: if the 5 x 5 dither pattern is used there is a 1.8% reduction in the achieved signal-to-
noise ratio compared to the above. The hexagonal dither entails no loss.

Table 5: IBIS line sensitivities (ISGRI and PICsIT, 106 s exposure, 3σ detection)

Energy 
(keV)

ISGRI line 

ph cm-2s-1
PICsIT line 

ph cm-2s-1
Energy 
(keV)

ISGRI line 

ph cm-2s-1
PICsIT line 

ph cm-2s-1

22.5 3.34 x 10-5 566.1 30.0 x 10-5 28.7 x 10-5

28.4 2.58 x 10-5 712.6 190 x 10-5 44.1 x 10-5

35.7 2.04 x 10-5 897.2 210 x 10-5 40.2 x 10-5

45.0 1.79 x 10-5 1129.5 35.8 x 10-5

56.6 1.66 x 10-5 1421.9 31.8 x 10-5

71.3 1.64x 10-5 1790.1 56.8 x 10-5

89.7 2.08 x 10-5 2253.6 47.1 x 10-5

112.9 1.79 x 10-5 2837.1 61.4 x 10-5

142.2 1.60 x 10-5 281 x 10-5 3571.7 72.6 x 10-5

179.0 4.89 x 10-5 19.8 x 10-5 4496.5 84.5 x 10-5

225.4 4.20 x 10-5 20.6 x 10-5 5660.7 237 x 10-5

283.7 12.3 x 10-5 22.6 x 10-5 7126.5 1200 x 10-5

357.2 20.5 x 10-5 25.7 x 10-5 8971.6 9440 x 10-5

449.6 18.7 x 10-5 23.5 x 10-5
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2.2   Hints and warnings

The results arising from these calculations should be treated as approximations only and 
should be used only for a preliminary feasibility check for a potential observation. The final
observation durations - those entered into the observing proposal - should be determined with the 
on-line observation time estimator (OTE), accessible via the Integral Science Operations Centre 
web site: http://www.rssd.esa.int/integral.

The OTE will be used by ISOC to assess the technical feasibility of proposed observations, 
and advise the Time Allocation Committee (TAC) accordingly.

The continuum sensitivities (see Figures 9 and 10) are given for ∆E = E/2 and can be extrapo-
lated reliably to small energy ranges. However, if ∆E is much greater than E/2, the assumed spec-
tral shape can introduce artifacts into the computation and we strongly advise against using these 
curves for calculations over very broad energy bands.

3.   Worked-out examples

Here we give some examples of how equations VI-2.1 and VI-2.2 can be used to assess the 
feasibility of ‘real’ observations.

3.1   Example 1

For a hard transient with a flux of 1 Crab at 100 keV and a hard power law (photon spectral 
index Γ of -1) continuum above 100 keV, determine the achievable signal-to-noise ratio at 
100 keV in an energy bin corresponding to the instrument FWHM at that energy.

Extrapolating the 2-10 keV flux of the Crab to the gamma-ray band, using a photon spectral 
index Γ of -2, a 1 Crab source has a flux at 100 keV of

 Nc = 1.1 x 10-3 photons cm-2 s-1 keV-1.

At 100 keV only ISGRI is sensitive (it is below the energy range of PICsIT). The sensitivity 
curve (Figure 8 or Table 3) gives a flux value at 100 keV of

 Sc= 1.9 x 10-6 photons cm-2 s-1 keV-1.

The energy resolution of ISGRI (FWHM, see Figure 5) at 100 keV is 8%;

 ∆E/E = 0.08.
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Figure 8. IBIS continuum sensitivities based on in-flight background measurements for a 
105 s exposure, 3σ detection and continuum binned to ∆E= E/2. Systematic errors (such as 
background uniformity) are not taken into account. Solid line: ISGRI; solid stepped line: 
PICsIT (single and multiple events combined). Also shown (dotted lines) are the intensities 
of a 1, 10 and 100 mCrab source (photon spectral index Γ of -2).

Figure 9. IBIS line sensitivities for a 106 s exposure, 3σ detection and an unresolved line. 
Solid line: ISGRI; dotted line: PICsIT. Note that the values are the same as used for AO-1; 
the in-flight line sensitivities are still being evaluated.
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Assume an observation time of

 t = 104 sec.

This results in a signal-to-noise ratio (VI-2.1) of

 nσ = 3 x (1.1 x 10-3 / 1.9 x 10-6) x (2 x 0.08)1/2 x (104 / 105)1/2  =  220σ.

In comparison, the OTE indicates a 209σ detection.

3.2   Example 2

The same source as in Example 1, but at higher energies, i.e. 700 keV.

Extrapolation of the 100 keV flux with the hard power law described above gives a 700 keV 
flux of

 Nc = 1.6 x 10-4 photons cm-2 s-1 keV-1.

Both PICsIT and ISGRI are sensitive at 700 keV. The sensitivity curves (Figure 8 or Tables 3 
and 4) indicate: 

 Sc (ISGRI)  = 2.3 x 10-6 photons cm-2 s-1 keV-1,
 Sc (PICsIT) = 1.9 x 10-6 photons cm-2 s-1 keV-1.

The overall sensitivity compared to source flux is lower at 700 keV compared to 100 keV, so 
use a larger energy bin, e.g.

 ∆E/E = 0.15.

Again assume a 104s observation;

 t = 104 sec.

Perform the same calculation as in Example 1;

 nσ (ISGRI)  = 36σ,
 nσ (PICsIT) = 44σ.

In comparison, the OTE gives 36σ and 42σ, respectively.

ISGRI and PICsIT can be combined to increase the significance of the detection:

nσ (total) = (nσ (PICsIT)2 + nσ (ISGRI)2 )1/2 = (362 + 442)1/2  = 57σ.
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3.3   Example 3

Observations of a recent transient to search for the 22Na line at 1.275 MeV (half life of 
3.5 yr).

The model-predicted line flux after outburst is 

 Nl  = 5 x 10-4 photons cm-2 s-1.

The PICsIT line sensitivity curve (Figure 9 or Table 5) indicates

 Sl  = 3.4 x 10-4 photons cm-2 s-1.

Assume a 500 ksec observation; 

t = 5 x 105 sec.

Then the line is detected at (VI-2.2):

 nσ = 3 x (5 x 10-4 / 3.4 x 10-4) x (5 x 105 / 106)1/2  = 3σ.

In comparison, the OTE indicates a 2.9σ detection.
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