INTEGRAL/IBIS observations of Narrow Line Seyfert 1 galaxies

Angela Malizia

FIVE YEARS OF INTEGRAL: Chia Laguna (Cagliari), October 17th - 19th, 2007

What is a narrow line seyfert galaxy ? Optical Spectra

NLS1

Masetti et al. 2006 Atel 957

Narrow H β (FWHM < 2000 km/s) Strong FeII emission Weak [OIII] ([OIII] λ 5007/H β < 3)

BLS1

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Masetti et al. 2006 A&A 459, 21

Broad Hβ Weak Fell Strong [OIII]

Main X-ray (< 10 keV) characteristics

Giant soft X-ray emission, steep power law with Γ up to 5

XMM-Newton discovery of sharp spectral drops at E > 7 keV

-mo detection of Fe emission -drop energy changes with time

蘝

Probably not due to photoionisation

Theoretical models

Partial covering

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Reflection/light bending

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Observations above 10 keV can help to discriminate between these two models BUT up to now only a few marginal detections of Beppo/SAX-PDS have been available (Comastri 2000).

INTEGRAL observations

third IBIS Survey (Bird et al. 2007)

Of 128 AGNs 4 NLS1 galaxies

source	z	FWHM(Hβ)	ΟΙΙΙ/Ηβ	Fell/Hβ
IGR J14552-5133	0.016	~1700	0.70	<1.7
IGR J16185-5928	0.035	~4000	0.20	0.7
IGR J16385-2057	0.027	~1700	0.50	1.2
Swift J2127.4+5654	0.015	~2000	0.72	1.3

INTEGRAL data analysis

E The All	Observations		Fit (mo po)		
source	Expo (ksec)	Sigma [17-100 keV]	Г	χ²/dof	F _{20-100 keV} 10 ⁻¹¹ erg cm ⁻² s ⁻¹
IGR J14552-5133	1966	5.5	2.35±0.8	3.01/8	0.92
IGR J16185-5928	1945	10.6	2.49±0.5	10.78/8	1.59
IGR J16385-2057	973	6.5	3.12±0.8	7.14/8	1.27
Swift J2127.4+5654	675	12	2.78±0.4	9.46/8	2.37

INTEGRAL data analysis: Comparison with BLS1

NLS1 galaxies seem to have harder spectra at high energies when compared with the BLS1s: we have done this comparison taking 4 INTEGRAL BLS1 with similar exposure

> ESO 209-12 FRL 1146 IGR J16558-5203 IGR J17418-1212

Average spectrum of the two classes

Impose the spectrum of the BLS1 into the NLS1 staked spectrum

Comparison:

excess emission around 20-30 keV resembling a reflection hump

deficit of counts at high energies possible due to exponential cut-off

A dichotomy is evident:

NLS1: Γ=2.64±0.29 (red) BLS1: Γ=2.07±0.16 (green) NLS1 total spectrum with Γ =2.07 fixed

→ Need X-ray data !!

Swift-XRT data: IGR J14552-5133 & Swift J2127.4+5654

source	NH _{Gal} (a)	Г	χ²/dof	F _{2-10 keV} (b)
IGR J14552-5133	0.337	1.9±0.07	71/77	0.89
Swift J2127.4+5654	0.787	1.9±0.05	150/15 7	2.20

(a) in units of 10^{22} cm; (b) x 10^{-11} erg cm⁻² s⁻¹

 No evidence of soft excess

 Typical value of photon index

XRT-ISGRI data

Broad band spectra fitted with simple power law absorbed by Galactic column density

Source		C	χ_{ν}
IGR J14552-5133	1.93±0.06	1.01±0.2	0.87
SwiftJ2127.4+5654	1.91±0.05	0.93±0.3	1.08
	100		

typical of S1 galaxiesOK

NLS1 percentage

~ 15% of optically selected samples (e.g. Williams et al. 2002)
* up to 50% of soft X-ray selected samples (e.g. Grupe 1996)

we detect only 4 over 128 (3%) AGN optically classified in the third IBIS Survey

we find only 3 in the complete IBIS sample of 70 AGNs detected in 20-40 keV band (Malizia et al. in preparation), i.e. 4%.

Is this due to the steepening of the high energy spectra??

Work in Progress

IGR J16385-2057 and IGR J16185-5928:
Swift-XRT approved (the first just observed!)

IGR J16185-5928 and Swift J2127.4+5654:
Suzaku (AO2 approved)

IGR J16185-5928, IGR J16385-2057 and Swift J2127.4+5654: XMM-Newton AO7 submitted