

Observation of microquasar candidates with the MAGIC telescope

Javier Rico Institut de Fisica d'Altes Energies (IFAE) Barcelona, SPAIN for the MAGIC collaboration

Five years of INTEGRAL workshop, Cagliari 17-19 October 2007

The MAGIC telescope

- MAGIC is a Imaging Air Cherenkov telescope operating in the energy range 50 GeV 50 TeV
- Located in the Roque de los Muchachos observatory, La Palma, Canary Island (Spain) at 28.8° N
- Largest single-dish (17 m \emptyset) \Rightarrow lowest energy threshold
- 576 high QE PMT camera with 3.5° Ø FOV
- Good angular resolution ~ 0.1°
- Determination of point-like sources **position** within 2'
- Energy resolution 20-30%
- Flux sensitivity: 2% Crab Nebula flux with 5σ in 50h
- Fast repositioning (<40s average) for GRB observation
- Observations under moonlight possible \Rightarrow 50% extra observation time

0.7

0.9

LS I +61 303 B0 V star with disc (Be) Compact object unknown Orbital period 26.496 days Distance ~ 2 kpc Periastron at $\phi = 0.23$ Eccentricity $\varepsilon = 0.73$ Microblazar? Binary pulsar?

0.3

0.4 AU

To observer,

BINARY PULSAR

Mirabel 2006

0.

- LS I was observed for 6 orbits between Oct 05 and March 06 54 hours of data, 22% of data taken during moon
- 2nd observation campaign in Sep to Dec 2006, 112 hours of data
- In total ~ 166 hours of data !!!

- Clear detection in 1st campaign with 8.7 sigma
- Excess position: RA=2h 40m 34s DEC= + 61°15' 25" In agreement with LS I position

Lightcurve and phaseogram

- The source is clearly variable at TeV energies (prob of being constant <10⁻¹¹)
- Intra-night flux stable
- Periodicity studies in progress
- Flux maximum at phases 0.6-0.7 with 10-20% Crab nebula flux
- Quiet at periastron
- Intense, isolated peak detected at phase 0.85

Spectral properties

• Spectrum between 300 GeV and 2 TeV

• No variability on the spectral shape with day, phase, cycle or season observed

• Well fitted by power-law with spectral index 2.6 ± 0.2 stat ± 0.2 sys

• The absolute flux changes by a factor 3

- Cygnus X-1 is binary system. Compact object is a black hole of M>13 M_{\odot}
- The optical companion is an O9.7 supergiant with M=30 M_{\odot} and a strong stellar wind
- The orbit is low-eccentric or circular with radius 0.2 AU and 5.6 days period. Modulation detected in radio and X-rays
- Inclination between 25 and 67 deg, 35 deg normally assumed
- Single-sided jet resolved in radio (microblazar?) Opening angle <2°, bulk velocity is β>0.6c
- Ring (\emptyset =5 pc) of bremsstrahlung emitting ionized gas at the shock between jet and ISM

X-ray phenomenology

• X-ray spectrum well described by a model including:

- Thermal disk + Fe line
- Thermal comptonization at corona + reflection on disk

• Non-thermal component at 400 keV during the intermediate state (seen by INTEGRAL & COMPTEL)

• 15 min – 8 hrs outbursts seen by Ulysses, Konus-Wind, BATSE

- Fluxes enhanced by factor 3 to 10 up to ~10³⁸ erg/s (2 kpc)
- during hard and soft states
- No change in the spectral shape
- Seems unrelated from accretion rate changes as hard/soft transitions (jet?)

J. Rico (IFAE)

MAGIC observations

• Cygnus X-1 observed from June to November 2006

- 40 hours in 26 nights
- No significant signal is observed at any energy cut for the entire data sample
- Upper limits to steady flux at the order of 1% Crab
- First limits at these energies

Daily searches

MJD	Т	N_{excess}	S	Post	U.L.
[days]	[min]	[evts]	$[\sigma]$	$[\sigma]$	[evts (% CU)]
53942.051	61.1	3.6± 4.8	0.8	< 0.1	15.02(11.1)
53964.887	105.6	4.8 ± 6.9	0.7	< 0.1	21.49(9.2)
53965.895	195.3	-13.2 ± 10.1	-1.3	< 0.1	8.74(2.0)
53966.934	124.8	9.4 ± 9.5	1.0	< 0.1	33.07(11.9)
53967.992	48.5	-9.0 ± 4.7	-1.7	< 0.1	1.57(1.5)
53968.883	237.5	-4.4 ± 11.6	-0.4	< 0.1	22.76(4.3)
53994.953	53.6	-4.0 ± 4.9	-0.8	< 0.1	6.84(5.8)
53995.961	58.1	-2.8 ± 4.6	-0.6	< 0.1	7.76(6.0)
53996.855	176.2	1.6 ± 9.1	0.2	< 0.1	22.15(5.7)
53997.883	132.7	5.2 ± 7.6	0.7	< 0.1	22.95(7.8)
54000.852	165.2	11.4 ± 9.7	1.2	< 0.1	35.41(9.7)
54002.875	154.4	36.8 ± 10.4	4.0	3.2	
54003.859	166.9	-7.0 ± 9.1	-0.8	< 0.1	13.35(3.6)
54004.891	123.3	$-6.0\pm$ 7.9	-0.7	< 0.1	11.33(4.1)
54005.914	87.9	-2.2 ± 6.3	-0.3	< 0.1	11.88(6.1)
54006.938	28.0	5.4 ± 4.1	1.4	< 0.1	15.26(24.6)
54020.891	65.5	-8.6 ± 5.9	-1.4	< 0.1	4.27(2.9)
54021.887	68.6	$-6.2\pm$ 5.7	-1.0	< 0.1	6.30(4.1)
54022.887	58.1	1.6 ± 5.9	0.3	< 0.1	14.55(11.3)
54028.863	68.6	3.4 ± 5.9	0.6	< 0.1	18.28(12.0)
54029.895	33.5	3.4 ± 5.1	0.7	< 0.1	15.93(21.5)
54030.863	19.6	-1.8 ± 3.0	-0.6	< 0.1	5.41(12.5)
54048.824	47.2	1.6 ± 5.7	0.3	< 0.1	14.99(14.3)
54049.824	47.9	-6.0 ± 5.4	-1.1	< 0.1	6.09(5.7)
54056.820	27.1	-5.2 ± 3.8	-1.3	< 0.1	3.55(5.9)
54057.820	21.5	1.2 ± 2.6	0.5	< 0.1	7.96(16.7)

Five years of INTEGRAL workshop, Cagliari 17-19 October 2007

• 4.0σ on 2006-09-25 between 20h58 and 23h41 UTC

- Sample splitted until maximum significance is reached
- Correct probability by number of trials
- 4.9σ (4.1σ after 52 trials) from 79 minutes between 22h17 23h41

Signal significance and extension

• Excess compatible with point-like source at location $\alpha = 19^{h}58^{m}17^{s}$, $\delta = 35^{\circ}12'8'' \pm 1.5'$ (stat) $\pm 2'$ (syst)

Compatible with the position of Cygnus X-1 and exclude radio ring

Five years of INTEGRAL workshop, Cagliari 17-19 October 2007

J. Rico (IFAE)

- Spectrum unfolded of detector effects
- Well fitted by power law with index -3.2±0.6 and ~10% Crab at 1 TeV

- 3.8_o at phase 0.9-1.0 (BH superior conjunction)
- All (97%) data correspond to the same observation night

Correlation with X-rays

• Correlation MAGIC- X-rays (also INTEGRAL)

• MAGIC sees an excess right before the first Swift peak rise and zero flux in the decaying edge of second Swift peak

 Hard x-rays could be produced at the base of the jet and γrays further away by interaction with stellar wind

• BUT... opacities are expected to be huge (10 at 1 TeV)

MJD-54000 [days]

• LS I +61 303 has been deeply study at TeV energies with MAGIC over 2 years

• With Cygnus X-1, the number of known γ -ray binaries are 4, together with LS I +61 303 (MAGIC), LS 5039 and PSR B1959-63 (HESS), but:

o this is the first experimental evidence of VHE γ -ray emission from a system powered by accretion

o this is the first experimental evidence of VHE γ -ray emission from a system containing a stellar mass black hole

o the phenomenology is completely new:

- short time (<1day), intense flares</p>
- probably not related to the orbital motion

hints that the emission is produced far from the compact object