Tony Dean School of Physics & Astronomy University of Southampton

On behalf of an extended Bologna, Rome & Southampton Team

Pulsar Wind Nebulae

INTEGRAL.

The Source list of PWN:

• Selection based on the Mallory Roberts The Pulsar Wind Nebula Catalogue

<u>http://www.physics.mcgill.ca/~pulsar/pwncat.html</u>

• Interest heightened by the association with a number of HESS Sources

Three types of PWN for IBIS/ISGRI:

Seen by IBIS - discussed here ~ 10 (16%)

Pulsar seen in radio but not seen by IBIS ~ 25 (42%)

No radio pulsar ~ 25 (42%) – Possibly one seen by IBIS

- Crab
- J0540-6919 (LMC)
- J0835-4519 (Vela)
- J1302-6350 (Be accretor)
- J1513-5906 (MSH 15-52)
- **J1617-5055**
- J1717-2958 (Mouse) ?
- J1811-1925 (Turtle)
- **J1833-1034**
- J1846-0258 (Kes 75)
- IGR J18135-1751 HESS J1813-178 (Pulsar?)

- LHS Composite Radio/Optical/Chandra of Crab
- RHS Chandra image showing toroidal and jet structure
- NOTE elliptical morphology along jet axis
- Synch cooling makes size inverse function of photon frequency

Where do the soft gamma-rays come from ?

INTEGRAL spectrum has

photon index of T~2.23

i.e similar to Jet/Counterjet

$$\begin{split} \dot{E} &= 4.6 \times 10^{38} \text{ erg s}^{\text{-1}} \\ L_{(20-100)} &\sim 7 \times 10^{36} \text{ erg s}^{\text{-1}} \sim 1.5\% \ \dot{E} \\ L_{1-10\text{TeV}} &\sim 3.4 \times 10^{33} \text{ erg s}^{\text{-1}} \sim 10^{\text{-3}} \% \ \dot{E} \end{split}$$

HESS spectrum has **F~2.57** Centroid shown PSF ~0.14°

P<u>SR J1811 - 1925 :</u> The Turtle

Chandra Spectral Images

- "Classic" SNR/PWN/Pulsar configuration
- 4'5 diameter SNR has thermal kT ~ 0.6 keV
- 65ms Pulsar has Γ ~ 0.97
- Bilateral elongated PWN has $\Gamma \sim 1.8$

Blobs move along jet with ~ 1.4c and 0.8c
IBIS/ISGRI : **Г = 1.8** like Chandra PWN
L (20-100) ~ 0.66% Ė @ 5 kpc

PSR J1811 - 1925 :

0.2-2.0 keV 4.0-8.0 keV

SNR spectrum is thermal, kT~ 0.6 keV
Good fit between INTEGRAL and Chandra PSR + "jet"

Where do the gamma-rays come from?

INTEGRAL error circle lies within SNR

Fig. 2. Composite spectrum *Chandra* and *INTEGRAL*. The two data set in the *Chandra* energy range are the spectra extracted from the jet-like feature (region A in the text) and PSR+jet-like feature (region B in the text).

PSR J1811 - 1925 & HESS J1809-193

Is there enough power?

Pulsar	Ė (erg/s)	Distance (kpc)	$L_{HESS}(\% \dot{E})$
PSR J1811-1925	6.4× 10 ³⁶	5	0.6
PSR J1809-1917	1.8× 1036	3.5	1.2

Table 1. Characteristics of the pulsars located near to the HESS J1809-193 source. L_{HESS} covers the 1–10 TeV energy range.

Can PSR J1811 feed HESS 1809?

@ 5 kpc centroid of HESS ~29 pc from pulsar
Lifetime of 30+ TeV electrons enough to get there
IC process for TeV gammas

Aharonian et al 2007

Right Ascension

0.005 G12.0-0.1 0.0045 OG11.89-0.21 0.004 0.0035 -19°00 G11.4-0.1 0.003 311.18 ± 0.1 0.0025 G11.2-0.3 0+0.00.002 -19'30 0.0015 G11.03-0.05 G11.15-0.7 0.001 G10.59-0.04 0.0005 -20*00 18h12m 18^h10 18^h08^l

HESS J1809-193

PSR J1846-0258 : Kes75

Chandra Spectral Images

- Very young (~700y) system @ 19kpc
- P = 324 ms
- dP/dt = 7.1 × 10⁻¹² ss⁻¹
- PWN/PSR close to centre of composite SNR
- SNR, thermal, kT ~ 2.9 keV
- Pulsar has Γ ~ 1.39
- Axisymmetric elongated PWN has $\Gamma \sim 1.92$
- Hot spots along axis on either side of pulsar
- Exceptional timing properties : P & dP/dt > 10 Crab
- Result of extreme B value of 4.8 10¹³ G ?

Helfand et al 2003

Youngest with longest period

PSR J1846-0258 : Kes75

- IBIS "coincident" with Pulsar/PWN complex
- IBIS/ISGRI : Γ = 2.0 ⇒ includes PWN + Pulsar
- $\dot{E} = 8.4 \times 10^{36} \, \text{erg s}^{-1}$
- L (20-100) = 1.3 × 10³⁶ erg s⁻¹ @ 19kpc
- Extraordinary L (20-100) ~ 15% E III But some concerns over 19 kpc

PSR J1617 - 5055 - HESS J1616-508

HESS image

INTEGRAL image

- HESS extended and one sided, source size decreases with Eγ
- INTEGRAL, point like, coincident with 69ms PSR
- Soft γ -ray emission $\Gamma = 1.91$
- X-rays, small extension, coincident with pulsar

PSR J1617 -5055 - HESS J1616-508

Composite XMM-Newton/MOS, BeppoSAX/MECS and INTEGRAL/ISGRI spectrum

Is there enough power?

- $\dot{\mathbf{E}} = 1.6 \times 10^{37} \, \mathrm{erg \ s^{-1}}$
- Characteristic age ~ 8ky
- $L_{(20-100)} = 7.4 \times 10^{34} \text{ erg s}^{-1} \sim 0.5\% \text{ \dot{E}}$
- L_{TeV} ~ 1.2% Ė
- d ~ 6.5 kpc

Mechanisms:

• X/soft γ -rays: synchrotron, $E_e \sim 10^{13} - 10^{14} \text{ eV}, \tau \sim 500 \text{ y}$

- TeV: IC on (partly) CMB, $E_e \sim 10^{12} 10^{13} \text{ eV}, \tau \sim 3-5000 \text{ y}$
- 10 µGauss field

PSR J0540-6919 in LMC - Crab TwinP

Chandra spectrum has Γ ~1.92 pulsar, ~2 – 2.1 nebula

INTEGRAL spectrum has Γ ~2.2 Nebular emission?

 $\dot{E} = 1.5 \times 10^{38} \text{ erg s}^{-1}$ L₍₂₀₋₁₀₀₎ ~5.95 10 ³⁶ erg/s ~ 4 % \dot{E}

PSR 80540-69-3/23-MIC X-1(651

PSR J0835-4510 - Vela

Aharonian et al 2006

Youngish Vela Pulsar (89 ms, 290pc, E = 7x10³⁶ergs¹, τ - 11ky)
HESS extended source south of pulsar (B0833-45)
Rosat/ASCA Vela X jet like feature corresponds to a one-sided PWN
No IBIS excess from extended PWN,
No HESS excess from pulsar

PSR J0835-4510 - Vela

- XMM softens with distance from pulsar
- Synch cooling in X-ray domain ?
- Chandra has jets Γ ~ 1.1 1.2, rapidly moving blobs Γ ~ 1.1 1.4
 INTEGRAL has Γ = 2.07
- $L_{(20-100)} = 1.2 \times 10^{33} \text{ erg s}^{-1} \sim 1.6 \times 10^{-2} \text{ }\dot{E}$
- Vela is about 16 times smaller than the Crab

PSR J1513-5906 IIISH 15-52

PSR J1509-58, (5kpc, ~1500y, 150ms, É = 1.8x10³⁷ergs⁻¹, B=1.5 10¹³G)

Chandra shows torus and & jet with pulsar +

 HESS Elliptically around pulsar (1st extended PWN jet seen in VHE)
 Chandra Spectral Images

 Pulsar, (A)
 Γ = 1.4

 Jet,(C)
 Γ = 1.6

Arc, (E) Γ = 1.6
 PWN Γ = 2.05

INTEGRAL Spectrum

IBIS/ISGRI : Γ = 1.89
L (20-100) ~ 2.44% Ė

PSR J1513-5906 IIIS<u>H 15-52</u>

Forot et al, ApJL (2006)

- Pulsar contamination removed by phase analysis to study pulsar wind
- Off pulse image slightly extended
- Significance map after PSF removal shows excess compatible with HESS
- The length of the 'jet' decreases with E_X
- Synchrotron ageing jet model works
- Hard X-rays dominated by jet emission?

PSR J1802-6350 - a unique PWN in a Be Binary

• 47ms Pulsar in 3.5 yr binary – 2 passages through disk

Also a HESS source average Γ ~2.7
 X-ray and soft γ-ray spectra vary in intensity and index through orbit

Γ_X varies from 1.8 before entry to disk to 1.2 after (XMM)
 Γ_{Sγ} found to be ~1.3 near periastron & ~2.7 averaged

L(20-100) ~ 2.8% Ė BUT this is an
Accretion dominated system

Where do the soft gamma-rays come from **P**

• **Positional location** : Tantalisingly close to pulsar, within PWN?

Crab	Inner Jet	
J0540-6919 (LMC)	PWN/"jet"	
J0835-4519 (Vela)	PWN/"jet"	
■ J1302-6350 (Be)	? Be accretor	
■ J1513-5906 (MSH 15-52)	PWN/"jet"	
J 1617-5055	near pulsar (X-PWN? – No jet)	
 J1811-1925 (Turtle) 	PWN/"jet"	
J 1833-1034	Somewhere in outer PWN – No je	
J1846-0258 (Kes 75)	PWN/"jet"	

IBIS Site must be close to electron accelerator

- Synchrotron lifetime of soft γ -ray producing electrons in PWN fields is $\tau \sim 10 100v$
- NOTE that \geq 67% of the soft γ -emitting systems have "jets"

Correlations with the pulsar characteristics - 20-100 keV luminosity

INTEGRAL

NOTE: They are all young, short period (~ 100ms), energetic pulsars, spin down ages in range $700 \le \tau \ge 20,000$ y

X-rays

 $Log L_{X(2-10)} = 1.34 Log L_{SD} - 15.34$

(Possenti et al 2002)

Correlations with the pulsar characteristics

Correlations with the pulsar characteristics

INTEGRAL

Weighted mean 20-100 keV photon spectral index:

 $\Gamma \textbf{ = 2.13 \pm 0.15}$

X-rays

$$\Gamma_{\rm PSR} = 2.08(0.07) - 0.029(0.003)\dot{E}_{40}^{-1/2}$$

$$\Gamma_{\rm PWN} = 2.36(0.33) - 0.021(0.005)\dot{E}_{40}^{-1/2}$$

Some general characteristics of INTEGRAL PWN

• A young energetic pulsar is needed

$$L_{(20-100)} \sim 1\% \dot{E}, \& L_{(20-100keV)} \approx L_{(1-10TeV)}$$

A jet-like feature is generally present

The soft gamma-ray photon index is Γ ~ 2

• INTEGRAL source is "coincident" with the pulsar/PWN & $\Gamma_{INTEGRAL} \approx \Gamma_{X-rayPWN}$

When accompanied by a TeV source, Synchrotron for soft gammas and Inverse Compton for TeV works well.

 NOTE the energies of the soft gamma producing electrons is ~ 10× TeV producing electrons