A MULTI-INSTRUMENT STUDY OF CYGNUS X-1

Sonja Fritz¹ Jörn Wilms², Eckhard Kendziorra¹, Ingo Kreykenbohm^{1,3}, Katja Pottschmidt⁴, Mike A. Nowak⁵, Marcus G. F. Kirsch⁶, Andrea Santangelo¹

¹Institut für Astronomie und Astrophysik, Universität Tübingen, Germany ²Dr. Remeis-Sternwarte, Bamberg, Germany ³*INTEGRAL* Science Data Centre, Versoix, Switzerland ⁴UMBC/GSFC, USA ⁵MIT, Center for Space Research, Cambridge MA, USA ⁶European Space Astronomy Centre (ESA), Madrid, Spain

"Five years of INTEGRAL" Science Workshop, October 18, 2007

Multi-Instrument Study of Cyg X-1

"Five years of INTEGRAL"

500

WHY CYGNUS X-1?

- $\bullet~$ Very bright \rightarrow measurements with high signal to noise
- Broad Fe Kα line
- Strong, energy dependent variability

2 main parts of analysis:

BROADBAND CONTINUUM

- constrain models for Comptonizing plasma (non-thermal Comptonization?)
- constrain amount of Compton reflection

IRON LINE

- search for structure of the Fe Kα line (relativistic broadening)
- determine shape and strength of the Fe K edge

< ロト < 同ト < ヨト < ヨト

WHY CYGNUS X-1?

- Very bright → measurements with high signal to noise
- Broad Fe K α line
- Strong, energy dependent variability

2 main parts of analysis:

BROADBAND CONTINUUM	Iron Line	
INTEGRAL, RXTE	XMM-Newton	

- L

Image: Image:

THE OBSERVATIONS

Cyg X-1 was observed simultaneously by

- XMM-Newton (total observation time: ~40 ksec)
- RXTE (total observation time: ~152 ksec)
- INTEGRAL (total observation time: ~320 ksec)

for 4 times in November / December 2004

4 keV -1 MeV

S. Fritz (IAAT)

Multi-Instrument Study of Cyg X-1

THE OBSERVATIONS

Cyg X-1 was observed simultaneously by

- XMM-Newton (total observation time: ~40 ksec)
- RXTE (total observation time: ~152 ksec)
- INTEGRAL (total observation time: ~320 ksec)

for 4 times in November / December 2004

BROKEN POWERLAW FITS

< 61 b

ヨト・モート

BROKEN POWERLAW FITS

and 1.35

 \implies good agreement with previous results

Multi-Instrument Study of Cyg X-1

Eqpair Fits - Thermal Model

Fritz et al. (2007)

"Five years of INTEGRAL"

э

A B F A B F

< 61 b

EQPAIR FITS - THERMAL MODEL

Fritz et al. (2007)

"Five years of INTEGRAL"

< 17 × <

3.1

EQPAIR FITS - THERMAL MODEL

Thermal Model:

above 300 keV strong residuals present in the averaged spectrum

$$\chi^2_{\rm red}$$
 = 1.65 (324 dof)

Fritz et al. (2007)

-"Five years of INTEGRAL"

Sar

EOPAIR FITS - HYBRID MODEL

Hybrid Thermal/Nonthermal Model:

Best fit: $\ell_{\rm nth}/\ell_{\rm h} \sim 0.67$

 \implies 67% of the power supplied to electrons in corona is in the non-thermal component

Fritz et al. (2007)

 $\chi^2_{\rm red} = 1.40 \ (323 \ {\rm dof})$

-"Five years of INTEGRAL"

∃ ⊳

WHY CYGNUS X-1?

- $\bullet~$ Very bright \rightarrow measurements with high signal to noise
- Broad Fe Kα line
- Strong, energy dependent variability

2 main parts of analysis:

BROADBAND CONTINUUM

- constrain models for Comptonizing plasma (non-thermal Comptonization?)
- constrain amount of Compton reflection

IRON LINE

- search for structure of the Fe Kα line (relativistic broadening)
- determine shape and strength of the Fe K edge

< ロト < 同ト < ヨト < ヨト

WHY CYGNUS X-1?

- Very bright \rightarrow measurements with high signal to noise
- Broad Fe K α line
- Strong, energy dependent variability

2 main parts of analysis:

BROADBAND CONTINUUM	Iron Line	
INTEGRAL, RXTE	XMM-Newton	

- L

I > <
 I >
 I

WHY CYGNUS X-1?

- $\bullet~$ Very bright \rightarrow measurements with high signal to noise
- Broad Fe Kα line
- Strong, energy dependent variability

2 main parts of analy	VSie-
BROADBAND CONTINUUM PROBLEM:	OR XMM!!!
CYG X-1 TOO BRIGHT	XMM-Newton

SQR

< ロト < 同ト < ヨト < ヨト

THE XMM-Newton MODIFIED TIMING MODE

IMPORTANT TO NOTE

cps limit of EPIC-pn timing mode due to *telemetry*, NOT due to camera capabilities!

Therefore:

- switch off EPIC-MOS
- disregard soft photons

MODIFIED TIMING MODE:

increase lower energy threshold in EPIC-pn from 200 eV to 2.8 keV

S. Fritz (IAAT)

Multi-Instrument Study of Cyg X-1

THE XMM-Newton MODIFIED TIMING MODE

IMPORTANT TO NOTE

cps limit of EPIC-pn timing mode due to *telemetry*, NOT due to camera capabilities!

Therefore:

- switch off EPIC-MOS
- disregard soft photons

MODIFIED TIMING MODE:

increase lower energy threshold in EPIC-pn from 200 eV to 2.8 keV

S. Fritz (IAAT)

Multi-Instrument Study of Cyg X-1

XMM-Newton SPECTRUM

• Power-law fit ($\Gamma = 1.89$): strong residuals in Fe K α region

S. Fritz (IAAT)

Multi-Instrument Study of Cyg X-1

"Five years of INTEGRAL"

SQR

XMM-Newton SPECTRUM

- Power-law fit ($\Gamma = 1.89$): strong residuals in Fe K α region
- adding narrow line ($E = 6.52 \text{ keV}, \sigma = 50 \text{ eV}$): still strong residuals in Fe K α region

XMM-Newton SPECTRUM

- Power-law fit ($\Gamma = 1.89$): strong residuals in Fe K α region
- adding narrow line ($E = 6.52 \text{ keV}, \sigma = 50 \text{ eV}$): still strong residuals in Fe K α region
- adding relativistic line (E = 5.88 keV, emissivity $\propto r^{-2.8}$): fit improves significantly $(\chi^2_{\text{red}} = 1.8)$

Cygnus X-1 - Iron Line

CHANDRA - XMM COMPARISON

Multi-Instrument Study of Cyg X-1

Cygnus X-1 - Iron Line

CHANDRA - XMM COMPARISON

Multi-Instrument Study of Cyg X-1

XMM LIGHTCURVES

S. Fritz (IAAT)

Multi-Instrument Study of Cyg X-1

XMM LIGHTCURVES

S. Fritz (IAAT)

Multi-Instrument Study of Cyg X-1

"Five years of INTEGRAL"

590

Cygnus X-1 - Iron Line

FLUX VARIABILITY OF THE IRON LINE

S. Fritz (IAAT)

Multi-Instrument Study of Cyg X-1

Cygnus X-1 - Iron Line

FLUX VARIABILITY OF THE IRON LINE

Multi-Instrument Study of Cyg X-1

SUMMARY

BROADBAND CONTINUUM

- Cyg X-1 was in the Intermediate State
- good agreement with previous results
- 67% of power supplied to electrons in corona in non-thermal component

IRON LINE

- confirmation of relativistically broadened Iron Line
- broad line most likely from ionized Fe
- Fe Kα line shows strong variability during the observations

< 61 b

4 ∃ > < ∃ >