V YEARS OF INTEGRAL

SFXT... again J.A. Zurita Heras, S. Chaty, R. Walter

AIM, CEA/Saclay, Université Paris-Diderot

SFXT sample

Source	R.A. (J2000.0)	Dec. (J2000.0)	Unc.	Sp.T.	Other name	
IGR J08408-4503	08 40 47.97	-45 03 29.8	5.4" (XRT)	HD 74194 O8.5 Ib		
IGR J11215-5952	11 21 46.9	-59 51 42	5" (XRT)	HD 306414, B1 Ia-type		
IGR J16195-4945	16 19 32.2	-49 44 30.7	0.6" (Chandra)	sgOB		
IGR J16418-4532	16 41 51.22	-45 32 26.0	4" (XMM)	OB		
IGR J16465-4507	16 46 35.38	-45 07 05.2	4" (XMM)	B0.5I		
IGR J16479-4514	16 48 06.6	-45 12 08	4" (XMM)	sgOB		
XTE J1739-302	17 39 11.58	-30 20 37.6	Chandra	O8Iab(f)	IGR J17319-3021	
IGR J17407-2808	17 40 40.08	-28 08 24.0	1.7' (ISGRI)	?		
XTE J1743-363	17 43 00.24	-36 22 51.6	0.8' (ISGRI)	?		
AX J1749.1-2733	17 49 06.8	-27 32 30.6	6.3" (SWIFT)	?		
IGR J17544-2619	17 54 25.28	-26 19 52.6	0.6" (Chandra)	O9Ib		
SAX J1818.6-1703	18 18 37.89	-17 02 47.9	0.6" (Chandra)	sgOB		
AX J1841.0-0536	18 41 0.54	-05 35 46.8	Chandra	sgB0-I	IGR J18410-0535	
AX J1845.0-0433	18 45 01.4	-04 33 57.7	4" (XMM)	0 9.5I	IGR J18450-0435	
XTE J1901+014	19 01 35.28	+01 26 20.4	0.6' (ISGRI)	?		

AX J1845.0-0433

AX J1749.1-2733

Rate(quiescent)=0.25±0.03 cts/s

AX J1845.0-0433

AX J1845.0-0433 spectrum

AX J1749.1-2733

ZH, Chaty, et al., in prep

AX J1749.1-2733: Opt/NIR counterpart?

ZH, Chaty, et al., in prep

Summary

AX J1845.0-0433: Persistent source Faint quiescence emission Similar to other known sgHMXB but slightly higher variability factor (~25)

 AX J1749.1-2733: No counterpart identified HMXB spectrum Long period (185 days or less) Likely a Be system?

Clumpy winds (I)

Source	Spectral Type	Distance kpc	$F_q \ { m ct/s}$	$F_{fl} m ct/s$	N_{fl} short+long	$t_{fl} \; [\mathrm{short}] \ \mathrm{ksec}$	$t_{fl} \; [ext{long}] \ ext{ksec}$	$\begin{array}{c c} T_{obs} \\ \text{days} \end{array}$				
SFXT systems												
IGR J08408 - 4503	$O8.5 \ Ib^1$	2.8^{1}	< 0.1	2.1-3.9	2+0	3.6		52.0				
IGR J17544 - 2619	O9 Ib ²	$2-4^2$	0.06	4.2 - 24	8+0	2.5(2-4.3)		127.0				
XTE J1739-302	$O8.5 Iab(f)^3$	$1.8 - 2.9^3$	0.08	3.0 - 28	12 + 1	4.2 (2-8)	50	126.4				
SAX J1818.6-1703	O9-B1 I ⁴		0.18	5.2 - 45	11+0	2.9(2-6)		76.9				
IGR J16479-4514	$OB I^5$		0.2	2.5 - 19	27 + 11	3.6(2-14)	(16-35) + 84	67.0				
AX J1841.0-0536	B0 I ⁶		< 0.1	3.7 - 15	4+0	5.8(2-13.1)		51.9				
AX J1820.5 - 1434	B^4		< 0.1	3.4 - 5.3	4+0	3.9(2-9.6)		59.4				
Intermediate systems												
IGR J16465 - 4507	$B0.5 I^7$		0.1	2.5 - 6.9	0+3		19, 25, 45	66.7				
AX J1845.0-0433	O9 Ia ⁸	3.6^{8}	0.2	4.0-6.2	6+0	4.0(2-14.3)		55.2				
IGR J16195 - 4945	$OB I^9$	7^{9}	0.2	2.8 - 4.8	6+0	2.2(2-3.3)		71.8				
IGR J16207-5129	$B0 I^4$	4^4	0.4	2.8-9.2	9+2	4.3(2-11)	18, 25	73.7				
$\rm XTEJ1743-363$			0.5	4.1 - 9.2	16 + 3	2.5(2-6.6)	21, 45, 61	122.9				

Ref.: ¹Leyder et al. (2007), ²Pellizza et al. (2006), ³Negueruela et al. (2006a), ⁴Negueruela & Schurch (2007), ⁵Chaty & al. (2007), ⁶Nespoli et al. (2007), ⁷Negueruela et al. (2005), ⁸Coe et al. (1996), ⁹Sidoli et al. (2005).

Clumpy winds (II)

Methods. Hard X-ray flares and quiescent emission of SFXT systems have been characterized and used to derive wind clump parameters.

Results. A large fraction of the hard X-ray emission is emitted in the form of flares with a typical duration of 3 ks, frequency of 7 days and luminosity of 10³⁶ erg/s. Such flares are most probably emitted by the interaction of a compact object orbiting at 10 R_{*} with wind clumps (10²² g) representing a large fraction of the stellar mass-loss rate. The density ratio between the clumps and the inter-clump medium is 10²⁻⁴ in SFXT systems. Conclusions. The parameters of the clump and d the inter-clump medium, derived from the SFXT flaring behavior, are in good agreement with macro-clumping scenario and line driven instability simulations. SFXT have probably a

larger orbital radius than classical sgHMXB.

Probing clumpy stellar winds with a neutron star

R. Walter^{1,2} and J. Zurita Heras³

INTEGRAL Science Data Centre, Chemin d'Ecogia 16, CH-1290 Versoix, Switzerland, e-mail: Roland.ValterGobs.unigo.ch
 Observatoire de Genève, Université de Genève, Chemin des Maillettes 51, CH-1290 Sauverny, Switzerland
 Jaboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, DAPNIA/Service d'Astrophysique, FR-91191 Gif-sur-Yvette,
 France, e-mail: juan-astonic.surita-heras@cca.fr

1. Choose a MASSIVE star

Credit: WR 124, by the Hubble Space Telescope

2. Shoot a **neutron** star

Credit: Isaac Newton, 1680, in A Treatise of the System of the World

3. Look with

4. Yoo-hoo wind and clumps

Results. A large fraction of the hard X-ray emission is emitted in the form of flares with a typical duration of 3 ks, frequency of 7 days and luminosity of 10^{36} erg/s. Such flares are most probably emitted by the interaction of a compact object orbiting at ~ 10 R_{*} with wind clumps (10^{22-23} g) representing a large fraction of the stellar mass-loss rate. The density ratio between the clumps and the inter-clump medium is 10^{2-4} in SFXT systems.

Conclusions. The parameters of the clump and of the inter-clump medium, derived from the SFXT flaring behavior, are in good agreement with macro-clumping scenario and line driven instability simulations. SFXT have probably a larger orbital radius than classical sgHMXB.

5. Book a trip to Sardinia, happy birthday

Look for the poster and catch the paper (Walter & ZH, 2007, AA accepted)

Happy birthday...

