# Review of the observations of the positron annihilation emission in our Galaxy

G. Skinner (GSFC, ) & P. Jean (CESR, Toulouse) on behalf the SPI team

- History of the observations before INTEGRAL
- Observations with SPI/INTEGRAL
- Recent results

First 10s after the big bang :

Too few positrons (by 1 part in 10<sup>9</sup>)

Today : Too many positrons (> 0)

Real problem : Too many explanations for the origin of the positrons

#### Suggested possible origins of positrons

#### Galactic centre/bulge :

- Light dark matter
- Q balls
- Starburst
- Color superconducting dark matter
- Primordial black holes
- GRB/Hypernova
- Small-mass black holes
- Millisecond pulsars
- SgrA\*
- Electroweak scale WIMPs

#### Galactic disk :

- <sup>26</sup>Al & <sup>44</sup>Ti decay
- SNIa
- Microquasars
- LMXBs
- Interactions in massive star winds

#### Extragalactic :

- GRBs
- Dead AGN in clusters

(Boehm et al. 2004) (Kasuya & Takahashi et al. 2005) (Dermer and Skibo, 1997) (Oaknin & Zhitnitsky et al. 2005) (Frampton & Kephart et al. 2005) (Parizot et al. 2005, Cassé et al. 2005) (Titarchuk & Chardonnet 2006) (Wang et al. 2006) (Cheng et al. 2006-2007, Totani 2006) (Pospelov & Ritz, 2007)

(Knödlseder et al. 2005) (Prantzos 2006) (Guessoum et al. 2006) (Weidenspointner et al. 2007) (Dermer et al)

(Dermer et al, 2001, Furlanetto & Loeb 2002) (Furlanetto & Loeb 2002)



How can we learn what is going on ?

- Variability
- Identification of point sources
- Form of distribution of extended emission
   Life before slowing down and annihilating ~10<sup>5</sup> 10<sup>6</sup> y
   Range ~ 100 pc
   Angular scale ~ degree



## OSSE/SMM/TGRS





- Bulge : (3.3 ± 0.3)  $10^{-4} \gamma s^{-1} cm^{-2}$
- Disk : (11.5 ± 0.5)  $10^{-4} \gamma s^{-1} cm^{-2}$
- Positive Latitude Enhancement : (8.8  $\pm$  0.5) 10<sup>-4</sup>  $\gamma$  s<sup>-1</sup> cm<sup>-2</sup>

## OSSE/SMM/TGRS

Extensive study of the morphology Milne et al., 1999, 2000, 2002

- Bulge : (3.5 24) x  $10^{-4} \gamma s^{-1} cm^{-2}$
- Disk : (17.4 7.3) x 10<sup>-4</sup>  $\gamma$  s<sup>-1</sup> cm<sup>-2</sup>
- PLE : (0.7 1.1)  $\times$  10<sup>-4</sup>  $\gamma$  s<sup>-1</sup> cm<sup>-2</sup>





- GC flux ~ 10<sup>-3</sup>  $\gamma$  s<sup>-1</sup> cm<sup>-2</sup>
- f<sub>Ps</sub> = (93 ± 4)%
- Bulge to disk flux ratio: B/D ~ 0.2-3.3

## OSSE/SMM/TGRS

### Spectral analysis

Provide information on the physical conditions of the medium in which e<sup>+</sup> annihilate.

• TGRS data

Width : (1.8±0.5) keV Ps fraction : (94±4) %

• OSSE data

Ps fraction : (93±4) %

-> No annihilation in molecular clouds -> Annihilation in the hot phase is of minor importance



## OBSERVATIONS WITH INTEGRAL / SPI

## **OBSERVATIONS WITH SPI**

• Early measurements of the 511 keV line (Jean et al. 2003)

Observations from March to May 2003 (GCDE & GPS) exposure time ~ 1.7 Ms.

Evidence for an extended emission FWHM  $\sim 10^\circ$ 

Spectral analysis : Spectrum extracted by model fitting - centroid :  $(511.0 \pm 0.2)$  keV - width :  $(3.0 \pm 0.5)$  keV

- flux : (0.8 - 1.5) x  $10^{-3}$  ph/s/cm<sup>2</sup>.

Evidence for a Ps continuum



#### • Remarks on the instrumental background

The S/N ratio is very weak (~1%)

Background modelling is required to extract the astrophysical signal.

Time variations of the background rate is estimated using the rate of saturating events in the GeDs.

 $B(t) = \sum_{i} f_{i}(R_{GedSat}(t))$ 



### The importance of understanding the background

- Enhancement of the instrumental background

- Strong instrumental background variations due to solar flares and detector failures

=> To avoid systematic errors, the analysis is performed using a large number of parameters to fit the instrumental background

=> Further cleaning of the data

=> Loss in sensitivity, improved immunity from systematic errors



Rate in the 511 keV background line

- After ~10 month of observations
- Search for point sources
  A single point source is excluded
- Model fitting : 2D gaussian
- FWHM: 6° 12° (95.5%)
- position:  $I = -1.0^{\circ} \pm 0.7^{\circ}$ b = 0.3° ± 0.7°
- The emission from the disk is not yet detected

=> B/D > 0.4-0.8

511 keV Rate (cts/s)



After one year of observations



Morphological analysis by model fitting :

- Bulge : 2D Gaussian shaped emission : ~8°×7° FWHM Flux = (1.09  $\pm$  0.04) × 10<sup>-3</sup>  $\gamma$ /s/cm<sup>-2</sup>
- Galactic disk : emission detected (~3-4 $\sigma$ ) Flux ~ (4-6) x 10<sup>-4</sup>  $\gamma$ /s/cm<sup>-2</sup>

- No positive latitude enhancement

After one year of observations

Morphological analysis

- Bulge to disk flux ratio B/D ~ 1-3
- Bulge to disk luminosity ratio  $B/D \sim 3-9$
- Correlation with tracers
   & galactic distributions

Knödlseder et al., 2005





### Old stellar population favored

• After one year of observations





Intervals : 410-430, 447-465 and 490-500 keV

Morphological analysis by model fitting :

- emission detected at ~10 $\sigma$ .
- 2D Gaussian shape : ~8° FWHM compatible with the 511 keV distribution

• After ~10 month of observations

First detailled spectral analysis (Churazov et al. 2005)

(510.954 ± 0.075) keV

- centroid :

- width :

- flux :

(2.37 ± 0.25) keV (7.16 ± 0.35) × 10<sup>-4</sup> ph/s/cm<sup>2</sup>. (94 ± 6) %

- Ps fraction :

The shape of the line and the Ps fraction depend on the physical properties of the medium in which positrons annihilate.

Churazov et al. 2005 deduced a temperature in the range 7000-40000 K and an ionisation fraction >1%.

![](_page_16_Figure_8.jpeg)

• After one year of SPI observations

#### Further spectral analysis (Jean et al. 2006)

- Line shape is complex.
- Detection of the broad 511 keV line emitted by annihilation of Ps formed in flight in the Galactic bulge.
- Positronium fraction in agreement with previous measurements.

| Param.            | Measured values                                                                                |
|-------------------|------------------------------------------------------------------------------------------------|
| In                | (0.72 ± 0.12 ± 0.02) 10 <sup>-3</sup> s <sup>-1</sup> cm <sup>-2</sup>                         |
| $\Gamma_{n}^{''}$ | 1.32 ± 0.35 ± 0.02 keV                                                                         |
| I,                | (0.35 ± 0.11 ± 0.02) 10 <sup>-3</sup> s <sup>-1</sup> cm <sup>-2</sup>                         |
| Γ <sub>b</sub>    | 5.36 ± 1.22 ± 0.06 keV                                                                         |
|                   | (4.23 ± 0.32 ± 0.03) 10 <sup>-3</sup> s <sup>-1</sup> cm <sup>-2</sup>                         |
| A                 | $(7.17 \pm 0.80 \pm 0.06)$ 10 <sup>-6</sup> s <sup>-1</sup> cm <sup>-2</sup> keV <sup>-1</sup> |
| f <sub>Ps</sub>   | (97±2) %                                                                                       |

![](_page_17_Figure_6.jpeg)

# Expected 511 line width for different annihilation environments (keV FWHM)

Enaction of ongine

|              | i luction of gruins |                  |               |
|--------------|---------------------|------------------|---------------|
| Phase        | $x_{gr} = 1$        | $x_{\rm gr} = 0$ | $x_{gr} = 10$ |
| Molecular    | 2.39                | 2.39             | 2.39          |
| Cold         | 3.00                | 3.00             | 2.92          |
| Warm neutral | 4.78                | 4.76             | 4.74          |
| Warm ionized | 1.02                | 1.00             | 1.19          |
| Hot          | 1.99                | 11.0             | 1.96          |
| Combined     | 2.26 (1.18)         | 2.17 (1.15)      | 2.17 (1.37)   |

Table 2. Fraction (in %) of positrons forming positronium in flight, in a completely neutral medium.

| References             | Н    | $H_2$          | He             |
|------------------------|------|----------------|----------------|
| BRD79                  | 95   | 93             | _              |
| Brown & Leventhal      | _    | $89.7 \pm 0.3$ | $80.7 \pm 0.5$ |
| Wallyn et al. (1994)   | 98   | 90             | · <u> </u>     |
| Chapuis et al. (1994)  | _    | _              | 78             |
| Guessoum et al. (2005) | 95.5 | 89.6           | 81.7           |

Measured positronium fraction:

| OSSE - Milne et al (2000) | (93±4) % |
|---------------------------|----------|
| TGRS - Harris et al ()    | (94±6) % |
| SPI Churazov (2005)       | (94±6) % |
| SPI - Jean et al (2006)   | (97±2) % |

## CONCLUSIONS

#### What's new

- No positive latitude enhancement
- More accurate measure of the  $B/D \sim 0.7-2$  (Weidenspointner et al. 2006)
- Better constraint on the morphology of the emission in the bulge
- Bulge not offset from centre
- Detection of the annihilation of positronium formed in flight ( $\Gamma$  ~ 5.8 keV)
- First measurement of T and ionisation fraction of annihilating medium
- Spectro-imaging : extraction of the spectra from different galactic regions
- Asymmetric emission from the disk correlated with LMXBs distribution

#### Other interesting investigations :

- Update of annihilation rates (Guessoum et al. 2005)
- Constraints on the initial energy of e<sup>+</sup> (Beacom & Yüksel 2006, Sizun et al. 2006-2007)
- Propagation & diffusion of et in the ISM (Jean et al., 2006, Gillard et al. 2006, 2007)

#### -What's coming next

- Better spectral analysis (shift, line shape,  $f_{Ps}$ ) of the emission from the disk
- Annihilation emission from <sup>26</sup>Al decays in Cygnus region
- Detailed morphology of the emission from the bulge

# End