Suzaku Observations of SNR RX J1713.7-3946 in the Energy Range up to 40 keV

Takaaki Tanaka (SLAC/KIPAC, ISAS/JAXA) Yasunobu Uchiyama, Tadayuki Takahashi (ISAS/JAXA), Felix Aharonian (MPIK) and Suzaku RX J1713 team

17 Oct. 2007 Five Years of INTEGRAL @ Chia Laguna

SNR RX J1713.7-3946

Best Object for Study of Particle Acceleration

- Non-thermal X-ray emission dominates
- Bright & Large $(d \approx 1^{\circ})$
- Studied well also in TeV gamma-rays with H.E.S.S.

Cutoff? Detailed Morphology? \rightarrow Suzaku

Gamma-ray (H.E.S.S.)

Aharonian et al. (2006)

Distance: 1 kpc Age: 1600 yr

Suzaku Observatory Launched on 07/10/2005

XIS-S

(0.2 – 12 keV) Low Bgd. Large Eff. Area Good ΔE

HXD (10 - 600 keV) Well-type Active Shield

Hard X-ray Detector (HXD) ① Low Detector BGD

2 Narrow FoV
 Image: Second state
 Image: HXD-PIN
 SAX-PDS

Reduces X-ray BGD ex) CXB, GRXE Suitable for study of RX J1713.7-3946 $(d \approx 1^{\circ})$

XIS Data (0.4-12 keV)

1-5 keV

Power-law type spectra (No line features) $\Gamma = 2.2-2.7$ Consistent with previous studies by ASCA, Chandra and XMM-Newton

Cutoff around 10 keV

Spectrum of SW rim

 $\frac{dN}{d\varepsilon} \propto \varepsilon^{-\Gamma}$

Power Law with an Exponential Cutoff $\frac{dN}{d\varepsilon} \propto \varepsilon^{-\Gamma} \exp\left[-\left(\frac{\varepsilon}{\varepsilon_c}\right)\right]$

Spectral steepening even below 10 keV

HXD: Spectra above 10 keV

Detected up to $\simeq 40$ keV from all pointings

HXD: Spectral Fitting power-law fit $\rightarrow \Gamma \simeq 3.2$ significantly larger than those in soft X-ray band

Wide-Band Spectrum From 0.4 keV to 40 keV

Detection up to 40 keV \rightarrow Clear spectral cutoff

Cutoff Energy

Cutoff Energy \rightarrow Acceleration rate = Synchrotron loss rate Zirakashvili & Aharonian (2007) Predict rapid cutoff which agrees with Suzaku spectrum $\varepsilon_0 = 0.55 \left(\frac{v_s}{3000 \text{ km s}^{-1}}\right)^2 \eta^{-1} \text{ keV}$ $\varepsilon_0 = 0.67 \pm 0.02 \text{ keV}$ Suzaku Spectrum Chandra Image $v_s < 4500 \text{ km s}^{-1}$ Uchiyama et al. Nature (2007)

 $\eta \approx 1$ Almost the Bohm limit Very Efficient Acceleration

Magnetic Field Uchiyama et al. (2007) Nature

Year-scale Variability detected with Chandra → Acceleration & Cooling in year-scale → High Magnetic Field: 1 mG

Multi-Wavelength Study

 $B = 200 \mu G, t_0 = 1000 \text{ yr}, s = 2.0 \text{ (for } e^- \text{ and } p\text{)}$

keV Image vs TeV Image

Color: Suzaku XIS (1-5 keV) Contour: H.E.S.S.

Similar morphology also in the dim parts (Low BGD and large effective area of Suzaku XIS)

H.E.S.S.

Compare flux for the each square region

keV Image vs TeV Image

Tight Correlation

Homogeneous matter distribution ? (Inconsistent with NANTEN) Synchrotron emission correlate with matter distribution ?

"keV" excess

Large e/p ratio ? Recent acceleration at the bright spots ?

Conclusions

- We observed RX J1713.7-3946 with Suzaku
- We have detected hard X-rays up to 40 keV from RX J1713.7-3946, for the first time
- We have clearly detected cutoff structure around 10 keV
- Cutoff energy indicates very efficient acceleration (almost in the theoretical limit)
- Multi-wavelength spectrum can be well modeled with hadronic scenario.
- Tight keV-TeV correlation & "keV excess" in the brights spots