Discovery and long-term study of hard X-ray emission of SN1987A with MIR/KVANT

<u>S.A. Grebenev</u>

Space Research Institute, RAS

Radioactive ⁵⁶Co in the envelope

We celebrated this year the 20-years anniversary of the Supernova 1987A exploded in the Large Magellanic Cloud on February 21, 2007. It was the first local supernova for the last ~400 years.

Optical light curves of SN1987A took an exponential shape (with a decay time of 111 days) in ~100 days after the explosion that indicates the formation of 0.07 M_{\odot} of radioactive ⁵⁶Co inside the envelope.

October 17-19, 2007

Radioactive decay ${}^{56}Ni \rightarrow {}^{56}Co \rightarrow {}^{56}Co$

⁵⁶Ni → ⁵⁶Co (8.8 days) ⁵⁶Co→ ⁵⁶Fe (111.3 days)

<Nγ > ~2 photons/decay <Eγ > ~3.6 MeV/decay

Photon transport in the envelope Thomson depth $\tau_{T} = \int \sigma_{T} Ne(r) dr \sim 25 (t/yr)^{-2}$ Average number of scatterings $N_{s} \sim \tau_{T}^{-2}/2$ Average change of photon energy $\Delta E_{\gamma} \sim \begin{cases} -1/3, E_{\gamma} \sim m_{e}c^{-2} \\ -E_{\gamma}/m_{e}c^{-2}, E_{\gamma} < m_{e}c^{-2} \end{cases}$

Photoabsorption $\tau_a = \tau_T (Z/Z_{\odot}) (E_{\gamma}/10 \text{ keV})^{-3}$

Z - abundance of iron group elements

October 17-19, 2007

Hard X-rays from radioactive ⁵⁶Co

Monte-Carlo computations of multiple Compton scatterings of gamma-rays in the SN1987A envelope emitted due to the ⁵⁶Co decay (Grebenev, Sunyaev, 87, based on the hydrodynamical model by Utrobin, Imshennik, 87) have shown that hard X-rays should appear at the detectable level already in half a year after the explosion. This conclusion stimulated earlier MIR-KVANT observations and led to the discovery of the continuum emission in August 1987.

Crosses - HEXE Upper limits - TTM Diamonds - PulsarX1

from Sunyaev et al. (Nature 1987)

Five years of INTEGRAL

October 17-19, 2007

Localization of the hard X-ray source

HEXE is a collimated instrument with the narrow field of view (< 1 deg). We pointed the observatory to slightly different directions to show that SN 1987A is indeed the source of the unusually hard X-ray emission discovered from the region.

Contours are given at 67, 99 and 99.9% confidence levels (dashed and solid lines - for 15-45 and 45-105 keV energy bands).

from Sunyaev et al. SvAL, 16, 171 (1990)

Five years of INTEGRAL

October 17-19, 2007

Hard X-rays from radioactive ⁵⁶Co

Evolution of the hard X-ray spectrum of SN1987A as measured by MIR-KVANT and its explanation by radioactive decay of ⁵⁶Co and Comptonization.

from Sunyaev et al. SvAL, 16, 171 (1990)

Five years of INTEGRAL

October 17-19, 2007

Hard X-rays from radioactive ⁵⁶Co

Late evolution of the hard X-ray spectrum of SN1987A as measured by MIR-KVANT and its explanation by radioactive decay of ⁵⁶Co-⁵⁷Co and Comptonization.

Time scale for ⁵⁷Co decay is longer (391 days) and the emitted lines are softer (136, 122, 7.3 keV)

from Sunyaev et al. SvAL, 16, 171 (1990)

Five years of INTEGRAL

October 17-19, 2007

Gamma-ray lines from radioactive ⁵⁶Co and ⁵⁷Co

Direct escape gamma-ray lines at 847 and 1238 keV from radioactive decay of ⁵⁶Co in the envelope were detected by several balloon experiments and the SMM satellite.

122 keV

2000

136 keV

1000

DAYS AFTER EXPLOSION

Opportunity to do the same for ⁵⁷Co gamma-ray lines has been missed (HEXE 3σ limit corresponds to ⁵⁷Co/ ⁵⁶Co ratio 6 times exceeding the Earth's ⁵⁷Fe/ ⁵⁶Fe ratio).

Five years of INTEGRAL

10

Cm-2

(photons

FLUX AT EARTH

10-6

0

October 17-19, 2007

Mixing of radioactive ⁵⁶Co in the envelope

The observed evolution of hard X-ray spectra measured with HEXE (and the evolution of flux in direct-escape gamma-ray lines) can be explained by strong mixing of radioactive ⁵⁶Co over the envelope (mushroom structure, asymmetry/jets).

For the case of spherically symmetric mixing the following distribution of ⁵⁶Co was obtained

Sunyaev et al. (1990)

Kane, Arnett et al. (2000)

Five years of INTEGRAL

October 17-19, 2007

X-ray light curves as indicators of ⁵⁶Co mixing

Evolution of X-ray flux from SN1987A as measured at different energies with HEXE and its sensitivity to ⁵⁶Co mixing. Solid - accepted model Long-dashed - no mixing Short-dashed - mixed over

inner 6 M_{\odot}

Five years of INTEGRAL

October 17-19, 2007

Observations in the standard X-ray band

Nothing below 15 keV has been detected that confirms our conclusion on strong low energy cut-off in the Xray spectrum of SN1987A (connected with photoabsorption).

Five years of INTEGRAL

October 17-19, 2007

Observations in the standard X-ray band

GRANAT/ART-P observed SN1987A at 1309 day after the explosion. The figure on the left shows as Cyg X-1 hidden in the center of the envelope could be observed that time.

October 17-19, 2007

SNII, 50 kpc, 1 Msec, 1,2,3 years

SPI capability simulated by Churazov (2007)

SPI will be able to detect SNII at ~1 Mpc !

Five years of INTEGRAL

October 17-19, 2007

SNIa, 5 Mpc, 1 Msec, 60 days, v=10000 km/s

SPI capability simulated by Churazov (2007)

Five years of	INTEGRAL
---------------	----------

October 17-19, 2007

Long-term photometric light curve

Other energy sources in SN1987A (other isotopes, shock wave, and stellar remnant)?

The light curve began to deviate from the exponential law in one year when the envelope became more transparent and the energy taken by X- and gamma-rays became to be notable.

Five years of INTEGRAL

October 17-19, 2007

Long-term photometric light curve

-5

After 3 years the contribution of an additional energy source (most likely ⁴⁴ Ti) led to another change in the slope of the light curve. According to Suntzeff (1997) the remnant's luminosity was equal to (1.3-2.5)x10³⁶ erg/s and changes very slowly in 10 years after explosion.

Five years of INTEGRAL

October 17-19, 2007

X-ray emission from the shock wave

During last years Chandra observes a notable increase in the flux of soft thermal emission which is connected with interaction of the shock wave with the "inner equatorial ring" of SNR 1987A. The 0.3-8 keV ACIS images are shown (from Park et al. 2006).

Five years of INTEGRAL

October 17-19, 2007

X-ray emission from the shock wave

The increase is different in the soft (0.5-2 keV) and hard (3-10 keV) bands. The hard flux correlates well with the radio flux. The luminosity of this emission increased 10 times during last 5 years and reached the value 1.6×10^{36} ergs/s (Park et al. 2006).

Five years of INTEGRAL

October 17-19, 2007

X-ray emission from the shock wave

This evolution is accompanied by softening the spectrum (from kT~3 keV at day 4600 to 2.2 keV at day 6200) and reducing the X-ray radial expansion rate (Park et al. 2006).

Five years of INTEGRAL

October 17-19, 2007

Chandra and XMM limits on the point source

The Chandra/ACIS 90% confidence upper limit on the observed 2-10 keV luminosity of the point source (stellar remnant of SN1987A) was 5.5 x 10³³ ergs/s (Park et al. 2004).

The XMM-Newton can not resolve the source and provides a higher limit 5 x 10³⁴ ergs/s (2-10 keV, Shtykovskiy et al. 2005, Haberl et al. 2006).

Unfortunately photoabsorption is still very strong in this rather soft energy band. For the adopted ⁵⁶Co distribution

 $\tau_a \sim 6 (E_{\gamma} / 10 \text{ keV})^{-3} (t/6000 \text{ days})^{-2}$

at the epoch of obtaining the above limits. The corrected luminosity will exceed 2×10^{36} ergs/s in the case of Chandra.

INTEGRAL observations

The LMC field was observed by INTEGRAL in January, 2003, with a total exposure of about 1 Ms (it was one of the first targets of INTEGRAL).

The limit (2σ) for the 20-60 keV luminosity of SN1987A was equal to 1.1 x 10^{36} ergs/s. Being extrapolated to the soft X-ray band (2-10 keV) it gives the luminosity (0.6-1.6) x 10^{36} ergs/s (Shtykovsky et al. 2004). Till now it is the strongest direct limit on the luminosity of a stellar remnant in SN1987A !!!

The upper limit on the mass of ⁴⁴Ti, $M_{44} \leq 1 \times 10^{-3} M_{\odot}$ was obtained by measuring the flux in the lines of 68 and 78 keV. The theoretical estimate is $1.2 \times 10^{-4} M_{\odot}$.

ISGRI/IBIS (20-60 keV)

October 17-19, 2007

Hubble limit on the point source

The limit for any continuum emitter in the broad optical band at the center of SNR 1987A was found to be L_{opt} =8x10³³ ergs/s (Graves et al. 2005).

October 17-19, 2007

Comparison with point source in other SNRs

	TABLE 4 Comparison with Point Sources in Other SNRs					
SNR	Source	$\log L_{\rm X}$ (ergs s ⁻¹)	$\log L_{opt}$ (ergs s ⁻¹)	Age (yr)	Possible in SN 1987A?	
SN 1987A	Point source	≤33.74	≤33.9	16.75		
		Young Pulsars				
Kes 75	PSR J1846-0258	>34.6		1700	N	
Crab	PSR B0531+21	36.2	33.8	950	N	
N158A	PSR B0540-69	36.4	33.9	1660	N	
NID/B	PSK J0537-6910	35.5	≤33.1	5000	N	
MSH 15-52	PSK B1509-58	35.5	200	1800	N	
Monogem Ring	PSR B0655-45 PSR B0656+14	30.2	28.0	1.1 × 10 1 1 × 10 ⁵	I V	
Geminga	PSR J0633+1746	30.2	27.5	3.4×10^{5}	Ŷ	
	Nonplerio	nic X-Ray Point Sour	es in SNRs			
Cas A	Point source	33.8-34.6/33.3°	≤29.1 ^d	400	N/Y	
Рир А	1E 0820-4247	33.6°	$\leq 30.3^{d}$	3000	Y	
RCW 103	1E 1614-5055	33.9°	$\leq 30.8^{d}$	8000	N	
PKS 1209-52	1E 1207-5209	33.1°	≤30.1ª	7000	Y	
	А	nomalous X-Ray Puls	ars			
Kes 73	1E 1841-045	35.5		≤ 2000	N	
G29.6+0.1	AX J1845-0258	38.6/34.9°		≤ 8000	N	
CTB 109	1E 2259+586	36.9 ^f		8800	Ν	
		Soft Gamma Repeater	rs			
G42.8+0.6?	SGR 1900+14	34.6 ^d		10^{4}	N	
G337.0-0.1?	SGR 1627-41	35.8		5000	Ν	

from Graves et al. (2005).

Five years of INTEGRAL

October 17-19, 2007