Large-scale Properties of Galactic ²⁶AI Emission with SPI/INTEGRAL

Wei Wang

R. Diehl, K. Kretschmer, H. Halloin, A.W. Strong, X.L. Zhang, M. Lang MPE, Germany

17 Oct. 2007

Chia Laguna, Sardinia

Main Contents

- Large-scale spectral characteristics of ²⁶Al in the inner Galaxy
- Longitude study of ²⁶Al line emission
- Latitude study of ²⁶Al line emission
- ²⁶Al emission from Cygnus, Vela and Sco-Cen

Origin of ²⁶Al in the Galaxy

²⁶Al is synthesized by proton-capture on ²⁵Mg in the hot and proton-rich environment.

(Limongi & Chieffi 2006)

Five possible origins of ²⁶Al in the Galaxy:

- Core collapse supernovae
- > Wolf-Rayet stars (²⁶Al ejected by strong winds)
- Novae
- Asymptotic Giant Branch (AGB) stars
- Interactions of comic rays with the interstellar medium (ISM)

With a decay time of 1 million years, detections of ²⁶AI reflect the recent nucleosynthesis activity in the Galaxy. Yields and ejections of ²⁶AI depend on the stellar (wind) models (WRs, SNe), measurements of ²⁶AI in the Galaxy and star-formation regions have good constraints on the stellar models.

The 1809 keV gamma-ray line from radioactive ²⁶Al in the inner Galaxy was first detected by HEAO-C (Mahoney et al. 1982).

Breakthrough by COMPTEL/CGRO in ²⁶Al studies

²⁶Al Sky Map by 9-year data of COMPTEL/CGRO (1991-2000)

Extended Galactic ridge emission along the plane, plus Cygnus; Low-intensity ridge toward Vela, Carina.

Implications:

Origin of ²⁶Al is dominated by massive stars (core-collapse supernovae and Wolf-Rayet stars).

²⁶Al studies with SPI

COMPTEL has good ability on imaging, but poor on spectral information. While SPI can probe details of ²⁶Al line shapes with high spectral resolution.

Here, we used four years of SPI data (02.2003 – 02.2007) with total observation time: 47Ms

Observations concentrate on: the Galactic center the Inner Galaxy Cas A Cygnus Carina –Vela Crab (calibration)

²⁶Al line shape for the inner Galaxy region (-30°<l<30°, -10°<b<10°) large-scale spectral characteristics

Detection significance level of ~ 30 σ

²⁶Al line shapes along Galactic Longitudes

Why longitude studies?

 Asymmetry of ²⁶Al flux for 1st and 4th quadrants
²⁶Al line centroid energy shifts along longitudes due to Galactic rotation

Line shapes toward different directions of the Galactic plane: dynamics of ²⁶Al sources in ISM

²⁶Al Intensity asymmetry: 4th is brighter than 1st, flux ratio ~ 1.3

Spectral Variation along the Plane of the Galaxy 6 segments, 20-degree longitude bin (-60° < I <60°)

- Intensities: consistent with the COMPTEL Image
- Broad line feature toward I~20° 40° (Sagittarius arm)

Probe the Galactic Rotation effect

The Galactic Center (-5 < I < 5) Line centroid: 1808.66± 0.23 keV as a reference

Asymmetry of line energy shifts for negative and positive longitudes appears.

6 segments + Galactic center

Galactic rotation cannot explain this asymmetry.

Other effects: Galactic Bar, or local ²⁶Al sources

More details in Kretschmer's talk

Latitude study of ²⁶Al emission

Why latitude studies

 \geq ²⁶Al emission in the low latitudes (|b|<5°) is attributed to large-scale origin (8 kpc) in the Galactic disk;

> ²⁶Al emission toward higher latitudes (|b|>5°) would originate from the nearby star-formation regions (200 pc), e.g. in the Gould Belt.

²⁶Al spectra along latitudes (1st and 4th quadrants, separately)

²⁶Al emission in star-formation regions

Studies of ²⁶Al emission and line shapes in nearby star-formation regions are good probe of kinematics of ²⁶Al ejecta in ISM.

²⁶Al ejection from massive star groups

²⁶Al production and ejection from a group of stars can be predicted by population synthesis models:

- stellar evolution
- stellar wind models
- Initial mass function
- nucleosynthesis yields of ²⁶Al from WR stars and SNe.

Prediction: a time-dependent ejection of ²⁶Al mass from SNe and WRs in a star group.

Plüschke et al., 2001, Cerviño et al. 2002

Cygnus region

A large number of OB associations, mean age of 3 Myr Distance of 1 - 2 kpc

-13°< b <17° Detection significance level of 6 σ Derived ²⁶Al flux: (7.2±1.2)x10⁻⁵ ph cm⁻² s⁻¹ E=1808.81 (±0.31) FWHM=3.39 (±0.78) **2•10**⁻⁵ consistent with the results from COMPTEL, also consistent with the **1•10**⁻⁵ prediction of PopSyn models Flux (cm⁻² s⁻ (Pluschke et al. 2001). 0 Intrinsic line width: 0.93±0.82 keV -1•10⁻⁵ just mildly broadening compared with large-scale characteristics for 1820 he inner Galaxy (0.46 keV). 1800 1805 1815 1810 Energy [keV]

Studied region: 65°< I <95°

Vela region

The Vela SNR, and the nearest known Wolf-Rayet star WR 11 Distance of 200-400 pc

Sco-Cen region

The nearest star-formation region, containing of 0B association

Flux:

(6.7±2.0)x10⁻⁵ ph cm⁻² s⁻¹

Line is narrow

Line position has a large blueshift of 1.5 keV, implying ²⁶Al ejecta have a bulk velocity of 200 km s⁻¹ toward us.

Guest for environment of ²⁶Al sources in ISM: inhomogeneous in density?

-35°<l<-5°, 5°<b<30°

Summary

- Four years of SPI data obtain the ²⁶AI spectrum in the inner Galaxy region (~ 30 σ), narrow line, flux of 3x10⁻⁵ ph cm⁻² s⁻¹ rad⁻¹, converted to 2.7 M_o of ²⁶AI in the Galaxy;
- ²⁶Al line shapes along the Galactic longitudes are studied. 4th quadrant is brighter than 1st quadrants, with a ratio of 1.3. Line energy shifts along longitudes are discovered, as expected from Galactic rotation. The region toward the Sagittarius arm (20° < I < 40°) appears the broad line feature;
- ²⁶Al line shapes along the Galactic latitudes are probed. ²⁶Al emission is dominated by the thin disk. ²⁶Al emission toward the region of I<0°, b>5° is detected, which suggests the contribution from Sco-Cen.
- ²⁶Al line shapes in three nearby star-formation regions, Cygnus, Vela and Sco-Cen are obtained with SPI. Mildly broadening for Cygnus; broad line feature for Vela; a strong blueshift of 1.5 keV for Sco-Cen.

The End Thank you for your attention!